76 research outputs found

    Pharmacological characterisation of murine α4β1δ GABAA receptors expressed in Xenopus oocytes

    Get PDF
    BACKGROUND: GABAA receptor subunit composition has a profound effect on the receptor's physiological and pharmacological properties. The receptor β subunit is widely recognised for its importance in receptor assembly, trafficking and post-translational modifications, but its influence on extrasynaptic GABAA receptor function is less well understood. Here, we examine the pharmacological properties of a potentially native extrasynaptic GABAA receptor that incorporates the β1 subunit, specifically composed of α4β1δ and α4β1 subunits. RESULTS: GABA activated concentration-dependent responses at α4β1δ and α4β1 receptors with EC50 values in the nanomolar to micromolar range, respectively. The divalent cations Zn(2+) and Cu(2+), and the β1-selective inhibitor salicylidine salicylhydrazide (SCS), inhibited GABA-activated currents at α4β1δ receptors. Surprisingly the α4β1 receptor demonstrated biphasic sensitivity to Zn(2+) inhibition that may reflect variable subunit stoichiometries with differing sensitivity to Zn(2+). The neurosteroid tetrahydro-deoxycorticosterone (THDOC) significantly increased GABA-initiated responses in concentrations above 30 nM for α4β1δ receptors. CONCLUSIONS: With this study we report the first pharmacological characterisation of various GABAA receptor ligands acting at murine α4β1δ GABAA receptors, thereby improving our understanding of the molecular pharmacology of this receptor isoform. This study highlights some notable differences in the pharmacology of murine and human α4β1δ receptors. We consider the likelihood that the α4β1δ receptor may play a role as an extrasynaptic GABAA receptor in the nervous system

    Targeted treatments for fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is the most common identifiable genetic cause of intellectual disability and autistic spectrum disorders (ASD), with up to 50% of males and some females with FXS meeting criteria for ASD. Autistic features are present in a very high percent of individuals with FXS, even those who do not meet full criteria for ASD. Recent major advances have been made in the understanding of the neurobiology and functions of FMRP, the FMR1 (fragile X mental retardation 1) gene product, which is absent or reduced in FXS, largely based on work in the fmr1 knockout mouse model. FXS has emerged as a disorder of synaptic plasticity associated with abnormalities of long-term depression and long-term potentiation and immature dendritic spine architecture, related to the dysregulation of dendritic translation typically activated by group I mGluR and other receptors. This work has led to efforts to develop treatments for FXS with neuroactive molecules targeted to the dysregulated translational pathway. These agents have been shown to rescue molecular, spine, and behavioral phenotypes in the FXS mouse model at multiple stages of development. Clinical trials are underway to translate findings in animal models of FXS to humans, raising complex issues about trial design and outcome measures to assess cognitive change that might be associated with treatment. Genes known to be causes of ASD interact with the translational pathway defective in FXS, and it has been hypothesized that there will be substantial overlap in molecular pathways and mechanisms of synaptic dysfunction between FXS and ASD. Therefore, targeted treatments developed for FXS may also target subgroups of ASD, and clinical trials in FXS may serve as a model for the development of clinical trial strategies for ASD and other cognitive disorders

    Autoimmune disease in mothers with the FMR1 premutation is associated with seizures in their children with fragile X syndrome

    Get PDF
    An increased prevalence of autoimmune diseases in family members of children with autism spectrum disorders (ASD) has been previously reported. ASD is also a common problem co-occurring in children with fragile X syndrome (FXS). Why ASD occurs in some individuals with FXS, but not all, is largely unknown. Furthermore, in premutation carrier mothers, there is an increased risk for autoimmune diseases. This study compared the rate of ASD and other neurodevelopmental/behavioral problems in 61 children with FXS born to 41 carrier mothers who had autoimmune disease and in 97 children with FXS of 78 carrier mothers who did not have autoimmune disease. There were no significant differences in the mean age (9.61 ± 5.59 vs. 9.41 ± 6.31, P = 0.836), cognitive and adaptive functioning in children of mothers with and without autoimmune disease. Among children whose mothers had autoimmune disease, the odds ratio (OR) for ASD was 1.27 (95% CI 0.62–2.61, P = 0.5115). Interestingly, the OR for seizures and tics was 3.81 (95% CI 1.13–12.86, P = 0.031) and 2.94 (95% CI 1.19–7.24, P = 0.019), respectively, in children of mothers with autoimmune disease compared to children of mothers without autoimmune disease. In conclusion, autoimmune disease in carrier mothers was not associated with the presence of ASD in their children. However, seizures and tics were significantly increased in children of mothers with autoimmune disease. This suggests a potential new mechanism of seizure and tic exacerbation in FXS related to an intergenerational influence from autoimmunity in the carrier mother

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    The Japanese cotton textile industry as an export industry (1)

    Get PDF
    Publisher Copyright: © 2015 IEEE.In this paper a high level functional architecture for frequency and voltage control for the future (2030+) power system is presented. The proposal suggests a decomposition of the present organization of power system operation into a 'web of cells'. Each cell in this web is managed by a single system operator who assumes responsibility for real-time balance and voltage control of the cell, minimizing the dependency on inter-cell communication for secure system operation. The web-of-cells architecture ensures overall system stability by a combination of decentralized and distributed control patterns for frequency and voltage control. In each control cell, the operator maintains an accurate view on the overall cell state, based on adequate monitoring capabilities, and ensures secure operation by allocating and dispatching reserves located in the cell. Intercell coordination provides for efficient system-wide management and economic optimization.Peer reviewe

    Hallmarks of frailty and osteosarcopenia in prematurely aged PolgA<sup>D257A/D257A</sup> mice

    Full text link
    AbstractBackgroundFrailty is a geriatric syndrome characterized by increased susceptibility to adverse health outcomes. One major determinant thereof is the gradual weakening of the musculoskeletal system and the associated osteosarcopenia. To improve our understanding of the underlying pathophysiology and, more importantly, to test potential interventions aimed at counteracting frailty suitable animal models are needed.MethodsTo evaluate the relevance of prematurely aged PolgA(D257A/D257A) mice as a model for frailty and osteosarcopenia, we quantified the clinical mouse frailty index in PolgA(D257A/D257A) and wild type littermates (PolgA(+/+), WT) with age and concertedly assessed the quantity and quality of bone and muscle tissue. Lastly, the anabolic responsiveness of skeletal muscle, muscle progenitors and bone was assessed.ResultsPolgA(D257A/D257A) accumulated health deficits at a higher rate compared to WT, resulting in a higher frailty index at 40 and 46 weeks of age (+166%, +278%, p&lt;0.0001), respectively, with no differences between genotypes at 34 weeks. Concomitantly, PolgA(D257A/D257A) displayed progressive musculoskeletal deterioration such as reduced bone and muscle mass as well as impaired functionality thereof. In addition to lower muscle weights (-14%, p&lt;0.05, -23%, p&lt;0.0001) and fiber area (-20%, p&lt;0.05, -22%, p&lt;0.0001) at 40 and 46 weeks, respectively, PolgA(D257A/D257A) showed impairments in grip-strength and concentric muscle forces (p&lt;0.05). PolgA(D257A/D257A) mutation altered the acute response to various anabolic stimuli in skeletal muscle and muscle progenitors. While PolgA(D257A/D257A) muscles were hypersensitive to eccentric contractions as well as leucine administration, shown by larger downstream signaling response of the mechanistic target of rapamycin complex 1 (mTORC1), myogenic progenitors cultured in vitro showed severe anabolic resistance to leucine and robust impairments in cell proliferation. Longitudinal micro-CT analysis of the 6th caudal vertebrae showed that PolgA(D257A/D257A) had lower bone morphometric parameters (e.g. bone volume fraction, trabecular and cortical thickness, p&lt;0.05) as well as reduced remodeling activities (e.g. bone formation and resorption rate, p&lt;0.05) compared to WT. When subjected to 4 weeks of cyclic loading, young but not aged PolgA(D257A/D257A) caudal vertebrae showed load-induced bone adaptation suggesting reduced mechanosensitivity with age.ConclusionsPolgA(D257A/D257A) mutation leads to hallmarks of age-related frailty and osteosarcopenia and provides a powerful model to better understand the relationship between frailty and the aging musculoskeletal system.</jats:sec

    A randomized double-blind, placebo-controlled trial of ganaxolone in children and adolescents with fragile X syndrome

    No full text
    Abstract Background Gamma-aminobutyric acid (GABA) system deficits are integral to the pathophysiologic development of fragile X syndrome (FXS). Ganaxolone, a GABAA receptor positive allosteric modulator, is hypothesized to improve symptoms such as anxiety, hyperactivity, and attention deficits in children with FXS. Methods This study was a randomized, double-blind, placebo-controlled, crossover trial of ganaxolone in children with FXS, aged 6–17 years. Results Sixty-one participants were assessed for eligibility, and 59 were randomized to the study. Fifty-five participants completed at least the first arm and were included in the intention-to-treat analysis; 51 participants completed both treatment arms. There were no statistically significant improvements observed on the primary outcome measure (Clinical Global Impression-Improvement), the key secondary outcome measure (Pediatric Anxiety Rating Scale-R), or any other secondary outcome measures in the overall study population. However, post-hoc analyses revealed positive trends in areas of anxiety, attention, and hyperactivity in participants with higher baseline anxiety and low full-scale IQ scores. No serious adverse events (AEs) occurred, although there was a significant increase in the frequency and severity of AEs related to ganaxolone compared to placebo. Conclusions While ganaxolone was found to be safe, there were no significant improvements in the outcome measures in the overall study population. However, ganaxolone in subgroups of children with FXS, including those with higher anxiety or lower cognitive abilities, might have beneficial effects. Trial registration ClinicalTrials.gov, NCT0172515
    corecore