143 research outputs found

    Electron density in the quiet solar coronal transition region from SoHO/SUMER measurements of S VI line radiance and opacity

    Full text link
    Context: The sharp temperature and density gradients in the coronal transition region are a challenge for models and observations. Aims: We set out to get linearly- and quadratically-weighted average electron densities in the region emitting the S VI lines, using the observed opacity and the emission measure of these lines. Methods: We analyze SoHO/SUMER spectroscopic observations of the S VI lines, using the center-to-limb variations and radiance ratios to derive the opacity. We also use the Emission Measure derived from radiance at disk center. Results: We get an opacity at S VI line center of the order of 0.05. The resulting average electron density is 2.4 10^16 m^-3 at T = 2 10^5 K. This value is higher than the values obtained from radiance measurements. Conversely, taking a classical value for the density leads to a too high value of the thickness of the emitting layer. Conclusions: The pressure derived from the Emission Measure method compares well with previous determinations and implies a low opacity of 5 10^-3 to 10^-2. The fact that a direct derivation leads to a much higher opacity remains unexplained, despite tentative modeling of observational biases. Further measurements need to be done, and more realistic models of the transition region need to be used.Comment: 11 pages, 9 figure

    SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    Get PDF
    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established

    Explosive events - swirling transition region jets

    Full text link
    In this paper, we extend our earlier work to provide additional evidence for an alternative scenario to explain the nature of so-called `explosive events'. The bi-directed, fast Doppler motion of explosive events observed spectroscopically in the transition region emission is classically interpreted as a pair of bidirectional jets moving upward and downward from a reconnection site. We discuss the problems of such a model. In our previous work, we focused basically on the discrepancy of fast Doppler motion without detectable motion in the image plane. We now suggest an alternative scenario for the explosive events, based on our observations of spectral line tilts and bifurcated structure in some events. Both features are indicative of rotational motion in narrow structures. We explain the bifurcation as the result of rotation of hollow cylindrical structures and demonstrate that such a sheath model can also be applied to explain the nature of the puzzling `explosive events'. We find that the spectral tilt, the lack of apparent motion, the bifurcation, and a rapidly growing number of direct observations support an alternative scenario of linear, spicular-sized jets with a strong spinning motion.Comment: 9 pages, 3 figures, accepted for publication in Solar Physic

    The emission line near 1319 A in solar and stellar spectra

    Full text link
    An emission line near 1319 A is one of the strongest unidentified lines in the ultraviolet spectra of cool dwarf stars. In most line lists it is identified as a transition in N I, although its intensity would then be anomalous and the observed wavelength does not fit precisely that expected for N I. The line is also observed in cool giant stars. The measured wavelength of the line in stellar spectra is 1318.94 (+,- 0.01) A. Observations of giant stars provide further evidence that this line is not due to N I. It is proposed that this line is a decay from a previously unknown level in S I, which lies above the first ionization limit. This is identified with the 3d singlet D (odd parity) term. The previous tentative assignment of this term to the S I line at 1309.3 A then needs to be revised. The 1309.3 A line has been identified here for the first time in an astrophysical source. The singlet D (odd parity) level could, in principle, be populated by collisions from nearby autoionizing levels that have large number-densities, through population by di-electronic capture. Spin-orbit interaction with the autoionizing triplet D (odd parity) term might also lead to di-electronic capture into the singlet D (odd parity) level. A line at 1309.87 A observed in cool giant stars is identified as a transition in P II, pumped by the O I resonance lines.Comment: 9 pages, 3 figures, to be published in Monthly Notices of the Royal Astronomical Societ

    A statistical study of SUMER spectral images: events, turbulence, and intermittency

    Full text link
    We analyze a series of full-Sun observations, which was performed with the SoHO/SUMER instrument between March and October 1996. Some parameters (radiance, shift and width) of the S VI 93.3 nm, S VI 94.4 nm, and Lyman Epsilon line profiles were computed on board. Radiances and line-of-sight velocities in a large central region of the Sun are studied statistically: distributions of solar structures, field Fourier spectra and structure functions are obtained. The structures have distributions with power-law tails, the Fourier spectra of the radiance fields also display power laws, and the normalized structure functions of the radiance and velocity fields increase at small scales. These results support the idea of the existence of small scales, created by turbulence, and of intermittency of the observed fields. These properties may provide insight into the processes needed for heating the transition region, or, if confirmed in the corona, the corona itself. The difficulties encountered in this analysis, especially for the velocity data, underline the needs for sensitive ultraviolet imaging spectrometers.Comment: 10 pages, 13 figures, Astronomy & Astrophysics, in pres

    Signature of mass supply to quiet coronal loops

    Full text link
    Aims. The physical implication of large blue shift of Ne viii in the quiet Sun region is investigated in this paper. Methods. We compare the significant Ne viii blue shifts, which are visible as large blue patches on the Doppler-shift map of a middlelatitude quiet-Sun region observed by SUMER, with the coronal magnetic-field structures as reconstructed from a simultaneous photospheric magnetogram by means of a force-free-field extrapolation. Results. We show for the first time that coronal funnels also exist in the quiet Sun. The region studied contains several small funnels that originate from network lanes, expand with height and finally merge into a single wide open-field region. However, the large blue shifts of the Ne viii line are not generally associated with funnels. A comparison between the projections of coronal loops onto the solar x-y-plane and the Ne viii dopplergram indicates that there are some loops that reveal large Ne viii blue shifts in both legs, and some loops with upflow in one and downflow in the other leg. Conclusions. Our results suggest that strong plasma outflow, which can be traced by large Ne viii blue shift, is not necessarily associated with the solar wind originating in coronal funnels but appears to be a signature of mass supply to coronal loops. Under the assumption that the measured Doppler shift of the Ne viii line represents the real outflow velocity of the neon ions being markers of the proton flow, we estimate the mass supply rate to coronal loops to be about 10\^{34} s\^{-1}.Comment: 5 pages, 4 figure

    The Structure and Dynamics of the Upper Chromosphere and Lower Transition Region as Revealed by the Subarcsecond VAULT Observations

    Get PDF
    The Very high Angular resolution ULtraviolet Telescope (VAULT) is a sounding rocket payload built to study the crucial interface between the solar chromosphere and the corona by observing the strongest line in the solar spectrum, the Ly-a line at 1216 {\AA}. In two flights, VAULT succeeded in obtaining the first ever sub-arcsecond (0.5") images of this region with high sensitivity and cadence. Detailed analyses of those observations have contributed significantly to new ideas about the nature of the transition region. Here, we present a broad overview of the Ly-a atmosphere as revealed by the VAULT observations, and bring together past results and new analyses from the second VAULT flight to create a synthesis of our current knowledge of the high-resolution Ly-a Sun. We hope that this work will serve as a good reference for the design of upcoming Ly-a telescopes and observing plans.Comment: 28 pages, 11 figure

    The Sunrise Mission

    Get PDF
    The first science flight of the balloon-borne \Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is briefly summarized.Comment: 35 pages, 17 figure

    Sizes of transition-region structures in coronal holes and in the quiet Sun

    Full text link
    We study the height variations of the sizes of chromospheric and transition-region features in a small coronal hole and the adjacent quiet Sun, considering images of the intensity, Doppler shift, and non-thermal motion of ultraviolet emission lines as measured by SUMER, together with the magnetic field as obtained by extrapolation from photospheric magnetograms. In order to estimate the characteristic sizes of the different features present in the chromosphere and transition region, we have calculated the autocorrelation function for the images as well as the corresponding extrapolated magnetic field at different heights. The HWHM of the autocorrelation function is considered to be the characteristic size of the feature shown in the corresponding image. Our results indicate that, in both the coronal hole and quiet Sun, the HWHM of the intensity image is larger than that of the images of Doppler-shift and non-thermal width at any given altitude. The HWHM of the intensity image is smaller in the chromosphere than in the TR, where the sizes of intensity features of lines at different temperatures are almost the same. But in the upper part of the transition region, the intensity size increases more strongly with temperature in the coronal hole than in the quiet Sun. We also studied the height variations of the HWHM of the magnetic field magnitude B and its component |Bz|, and found they are equal to each other at a certain height below 40 Mm in the coronal hole. The height variations of the HWHM of |Bz/B| seem to be consistent with the temperature variations of the intensity size. Our results suggest that coronal loops are much lower, and magnetic structures expand through the upper TR and lower corona much more strongly with height in the coronal hole than in the quiet Sun.Comment: 6 pages, 4 figure

    Hot Explosions in the Cool Atmosphere of the Sun

    Full text link
    The solar atmosphere was traditionally represented with a simple one-dimensional model. Over the past few decades, this paradigm shifted for the chromosphere and corona that constitute the outer atmosphere, which is now considered a dynamic structured envelope. Recent observations by IRIS (Interface Region Imaging Spectrograph) reveal that it is difficult to determine what is up and down even in the cool 6000-K photosphere just above the solar surface: this region hosts pockets of hot plasma transiently heated to almost 100,000 K. The energy to heat and accelerate the plasma requires a considerable fraction of the energy from flares, the largest solar disruptions. These IRIS observations not only confirm that the photosphere is more complex than conventionally thought, but also provide insight into the energy conversion in the process of magnetic reconnection.Comment: published in Science 346, 1255726 (2014), 30 pages, 13 figures; for associated movie, see http://www2.mps.mpg.de/data/outgoing/peter/papers/2014-iris-eb/fig1-movie.mo
    corecore