164 research outputs found

    Investigation of effect of propulsion system installation and operation on aerodynamics of an airbreathing hypersonic airplane at Mach 0.3 to 1.2

    Get PDF
    Results from an investigation of the effects of the operation of a combined turbojet/scramjet propulsion system on the longitudinal aerodynamic characteristics of a 1/60-scale hypersonic airbreathing launch vehicle configuration are presented. Decomposition products of hydrogen peroxide were used for simulation of the propulsion system exhaust

    Bowhead Whale Distribution in the Southeastern Beaufort Sea and Amundsen Gulf, Summer 1979

    Get PDF
    The distribution of bowhead whales in the southeastern Beaufort Sea and Amundsen Gulf was determined from observations aboard commercial resupply vessels. Fifty-four to sixty-two whale sightings were recorded on the 2150 km (1160 nm) of transects. Distribution of whale sightings along transects was clumped. The proportion of whales seen near ice was significantly greater than the proportion of transect surveyed near ice. Our observations and interviews indicate that bowheads are seen over a period of several weeks in many areas where they are seen annually. Both the locations and seasonality of whale occurrence appear similar to distribution patterns extracted from sightings of nearly a century ago.Key words: Beaufort Sea - Admundsen Gulf, bowhead, cetacea, vessel transects, whaleMots clés: mer de Beaufort, golfe Admundsen, baleine boréale, cétacés, sectionnement par navire, balein

    Hydrology of The Sinking Creek System, Logan and Simpson Counties, Kentucky

    Get PDF
    Southwest of Bowling Green, Kentucky, is the Western Pennyroyal, is a karstified area which has been neglected in the study of its ground water. About 100 square miles near Adairville were chosen for analysis to help rectify this lack of knowledge. The area is dominated by Sinking Creek, a surface-subsurface drainage system. The main purpose of the study was to map the underground flow in the Sinking Creek area. The drainage system seemed to be typical for the Western Pennyroyal and exhibited many similarities to flow paths known in the Central Kentucky Karst. The investigation proved to be of basic value to future studies dealing with water well location, pollution of subsurface streams and karst-related flooding problems. The geographic scope of the study area extends from the rise of Sinking Creek to the origin of its headwaters in the residual outlying knobs of the Dripping Springs Escarpment to the north. Most of the area is a sinkhole plain developed mainly on the Ste. Genevieve and St. Louis limestones of Mississippian age. Map and field reconnaissance of the study area revealed the presence of 12 sinking streams, 6 resurgences and 5 caves, all occurring at or below 600 feet in elevation. On the basis of the physical features mentioned, two hypotheses were devised to explain their development and their relationship to the hydrology of the area. The first hypothesis was that the sinking stream and resurgences in the study area are connected in a single drainage system. This hypothesis was testable by physically determining subsurface connections in the field. The second hypothesis was that the sinking streams are controlled by the stratigraphy of the lithologic units. Diversion of surface streams occurs at or near the 600 foot elevation level, upon flowing from the Ste. Genevieve to the St. Louis limestone. This hypothesis was field tested by standard geologic methods. The determination of surface-subsurface stream connections was carried out by standard water tracing techniques using Rhodamine W.T. dye (20 percent solution) and fluorescein dye. The dye was injected into the streams, and samples were collected and then analyzed in the laboratory with a Turner fluorometer. Positive dye connections were obtained in all 5 traces. In addition to dye tracing, a large amount of field reconnaissance and subsurface mapping was necessary to determine the nature of the geologic controls on the surface-subsurface drainage system. Numerous rock outcrops and 5 caves were explored; one cave was mapped for over 4,000 feet. The lithologic studies proved to be inconclusive for the entire study area, but enough evidence was collected to support lithologic stream control in one cave stream segment. The culmination of the research design was to present the results of dye tracing and field work with a written description, graphs, and especially a map showing the connections established by the research

    Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation

    Get PDF
    Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways. Here we have analysed the roles of Fibroblast Growth Factor (FGF) and canonical Wingless-type MMTV integration site (Wnt/β-Catenin) signalling pathways on zebrafish osteogenesis. We have used transgenic and chemical interference approaches to manipulate these pathways and have found that both pathways are required for osteoblast differentiation in vivo. Our analysis of bone markers suggests that these pathways act at the same stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix (osx). We use two independent approaches that suggest that osx is a direct target of these pathways. Firstly, we manipulate signalling and show that osx gene expression responds with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways. Secondly, we have performed ChIP with transcription factors for both pathways and our data suggest that a genomic region in the first intron of osx mediates transcriptional activation. Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part by directing transcription of osx to promote osteoblast differentiation at sites of bone formation

    Macroscopic assessment of environmental trace evidence dynamics in forensic settings

    Get PDF
    Environmental trace evidence offers useful circumstantial intelligence to link persons and scenes of forensic interest. An increasing empirical research base is dedicated towards understanding the transfer and persistence dynamics of environmental indicators including pollen, soils, and diatoms, within a diverse range of experimental frameworks. This paper presents two discrete studies exploring transfer and persistence of soils and sediments on footwear and diatomaceous earth adhered to clothing in forensically pertinent scenarios. Variables including sediment type, foot position, clothing type, and body positioning were also explored throughout. Both experiments incorporated a field-based methodology during the sampling effort. Photographs were collected of an initial transfer sample and of a retained assemblage following hours, days, and up to one-week of wear, facilitating macroscopic assessment of trace evidence dynamics. All images were processed using accessible, open-source software before spatial analysis of evidence distribution within and temporal assessment (% retention) upon each evidential surface. The results highlighted consistent loss of transferred sediment from footwear with significantly greater retention of loamy clay soil than dune sand which was absent beyond 24 h of wear. Loss was not influenced by wearer gait but was more rapid from those areas of the shoe sole in direct contact with the ground. Diatomaceous earth was retrieved from all three clothing types tested after one week – significant losses of material occurred before 48 h with a consistent assemblage identified beyond this. Denim was significantly more effective than acrylic and fleece for diatomaceous earth retention and significantly more material was lost from clothing worn on the lower body. These findings highlight the value of using visual environmental markers and a macroscopic analytical approach during the investigation of environmental trace dynamics. The methodology offers a novel, non-destructive assessment of soil and diatom transfer and persistence, complementing more extensive laboratory-based examinations to ensure the development of a well-rounded research base within the forensic sciences

    Space applications of superconducting microwave electronics at NASA Lewis Research Center

    Get PDF
    Since the discovery of high temperature superconductivity in 1987, NASA Lewis Research Center has been involved in efforts to demonstrate its advantages for applications involving microwave electronics in space, especially space communications. The program included thin film fabrication by means of laser ablation. Specific circuitry which was investigated includes microstrip ring resonators at 32 GHz, phase shifters which utilize a superconducting, optically activated switch, an 8x8 32 GHz superconducting microstrip antenna array, and an HTS-ring-resonator stabilized oscillator at 8 GHz. The latter two components are candidates for use in space experiments which are described in other papers. Experimental data on most of the circuits are presented as well as, in some cases, a comparison of their performance with an identical circuit utilizing gold or copper metallization

    Loss of infectivity of poliovirus 1 in river water under simulated field conditions

    Full text link
    The effects of light, virus concentration, and turbidity on the rate of loss of infectivity (LOI) of poliovirus 1 were investigated in two test systems, which utilized flowing river water. Two levels of each variable were used in a 23 confounded factorial design. The seeded systems were sampled at regular intervals to establish LOI rates. Virus infectivity was measured by plaque assay. Loss of infectivity followed a two-component curve; an initial, rapid phase followed by a second, slower component. The slopes of the two components were examined by the analysis of variance to determine the potential influence of each variable. Both light and turbidity exerted a significant influence on the LOI rate in the second component of the LOI curve and also in the transition period between the two components; however, during the initial, rapid phase none of the variables influenced the LOI rate (at the 0.05 significance level). This research demonstrates the significance of light as a virucidal component in the aquatic environment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23757/1/0000730.pd

    Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)

    Get PDF
    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis

    AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish

    Get PDF
    The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2hu3335), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2hu3335 zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2hu3335 functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses
    corecore