454 research outputs found

    Equation-free modeling of evolving diseases: Coarse-grained computations with individual-based models

    Full text link
    We demonstrate how direct simulation of stochastic, individual-based models can be combined with continuum numerical analysis techniques to study the dynamics of evolving diseases. % Sidestepping the necessity of obtaining explicit population-level models, the approach analyzes the (unavailable in closed form) `coarse' macroscopic equations, estimating the necessary quantities through appropriately initialized, short `bursts' of individual-based dynamic simulation. % We illustrate this approach by analyzing a stochastic and discrete model for the evolution of disease agents caused by point mutations within individual hosts. % Building up from classical SIR and SIRS models, our example uses a one-dimensional lattice for variant space, and assumes a finite number of individuals. % Macroscopic computational tasks enabled through this approach include stationary state computation, coarse projective integration, parametric continuation and stability analysis.Comment: 16 pages, 8 figure

    University transformation and quantification devices

    Get PDF
    Indexación: Scopus; Scielo.Las políticas de Educación Superior en Chile les demandan a las Universidades la instalación de dispositivos de gestión orientados a organizar, cuantificar y monitorear el trabajo académico. Pensando en las implicaciones del uso de estos dispositivos de gestión, este trabajo presenta los resultados de un análisis discursivo de 95 documentos de trabajo (Reglamentos, Bases de concurso, Formularios de acreditación) para conocer las interpelaciones que realiza a la labor universitaria. Mediante el método de análisis de discurso, se caracteriza la actuación de los documentos oficiales que regulan y transforman el trabajo académico. El estudio realizado evidencia que los dispositivos de gestión del Trabajo académico performan el trabajo mediante acciones tales como: establecer jerarquías entre las múltiples tareas de un académico y entre académicos, mediante criterios que no han sido discutidos por la comunidad profesional; objetivar procesos laborales y asumir consensos en torno a ello, desconociendo disputas y desacuerdos actuales; omitir el contexto de producción académica, construyendo una imagen del trabajo como proceso individual; y finalmente instando relaciones laborales individualizadas y competitivas.In Chile, higher education policies have required universities to adopt management tools related to the monitoring and quantification of academic work. Accordingly, this paper presents the results of a documentary study of 95 official documents concerning academic work (Regulations, Scholarship and Grant Application Guidelines and Accreditation Application Forms) in order to understand the regulations pertaining to academic work. Discourse analysis was used to determine how these documents are used in the university environment to regulate and transform the academic work. The present study shows that management tools adopted characterize the academic work through actions such as: establish hierarchies among the multiple tasks of a faculty member and among faculty members using criteria that have not been discussed by the academic community; objectify work processes and reach consensus over them, disregarding current disputes and disagreements; omit the context of academic production creating an image of work as an individual process; and finally urge the establishment of individualizing and competitive work relationships.http://ref.scielo.org/d2c4s

    Characterizing the local vectorial electric field near an atom chip using Rydberg state spectroscopy

    Get PDF
    We use the sensitive response to electric fields of Rydberg atoms to characterize all three vector components of the local electric field close to an atom-chip surface. We measured Stark-Zeeman maps of SS and DD Rydberg states using an elongated cloud of ultracold Rubidium atoms (T∼2.5T\sim2.5 μ\muK) trapped magnetically 100100 μ\mum from the chip surface. The spectroscopy of SS states yields a calibration for the generated local electric field at the position of the atoms. The values for different components of the field are extracted from the more complex response of DD states to the combined electric and magnetic fields. From the analysis we find residual fields in the two uncompensated directions of 0.0±0.20.0\pm0.2 V/cm and 1.98±0.091.98\pm0.09 V/cm respectively. This method also allows us to extract a value for the relevant field gradient along the long axis of the cloud. The manipulation of electric fields and the magnetic trapping are both done using on-chip wires, making this setup a promising candidate to observe Rydberg-mediated interactions on a chip.Comment: 8 pages, 5 figure

    On a Conjecture of Goriely for the Speed of Fronts of the Reaction--Diffusion Equation

    Full text link
    In a recent paper Goriely considers the one--dimensional scalar reaction--diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u) with a polynomial reaction term f(u)f(u) and conjectures the existence of a relation between a global resonance of the hamiltonian system uxx+f(u)=0 u_{xx} + f(u) = 0 and the asymptotic speed of propagation of fronts of the reaction diffusion equation. Based on this conjecture an explicit expression for the speed of the front is given. We give a counterexample to this conjecture and conclude that additional restrictions should be placed on the reaction terms for which it may hold.Comment: 9 pages Revtex plus 4 postcript figure

    On the effect of low oxygen concentrations on bacterial degradation of sinking particles

    Get PDF
    In marine oxygen (O2) minimum zones (OMZs), the transfer of particulate organic carbon (POC) to depth via the biological carbon pump might be enhanced as a result of slower remineralisation under lower dissolved O2 concentrations (DO). In parallel, nitrogen (N) loss to the atmosphere through microbial processes, such as denitrification and anammox, is directly linked to particulate nitrogen (PN) export. However it is unclear (1) whether DO is the only factor that potentially enhances POC transfer in OMZs, and (2) if particle fluxes are sufficient to support observed N loss rates. We performed a degradation experiment on sinking particles collected from the Baltic Sea, where anoxic zones are observed. Sinking material was harvested using surface-tethered sediment traps and subsequently incubated in darkness at different DO levels, including severe suboxia (<0.5 mg l−1 DO). Our results show that DO plays a role in regulating POC and PN degradation rates. POC(PN) degradation was reduced by approximately 100% from the high to low DO to the lowest DO. The amount of NH4+ produced from the pool of remineralising organic N matched estimations of NH4+ anammox requirements during our experiment. This anammox was likely fueled by DON degradation rather than PON degradation

    Heavily Obscured Quasar Host Galaxies at z~2 are Disks, Not Major Mergers

    Full text link
    We explore the nature of heavily obscured quasar host galaxies at z~2 using deep Hubble Space Telescope WFC3/IR imaging of 28 Dust Obscured Galaxies (DOGs) to investigate the role of major mergers in driving black hole growth. The high levels of obscuration of the quasars selected for this study act as a natural coronagraph, blocking the quasar light and allowing a clear view of the underlying host galaxy. The sample of heavily obscured quasars represents a significant fraction of the cosmic mass accretion on supermassive black holes as the quasars have inferred bolometric luminosities around the break of the quasar luminosity function. We find that only a small fraction (4%, at most 11-25%) of the quasar host galaxies are major mergers. Fits to their surface brightness profiles indicate that 90% of the host galaxies are either disk dominated, or have a significant disk. This disk-like host morphology, and the corresponding weakness of bulges, is evidence against major mergers and suggests that secular processes are the predominant driver of massive black hole growth. Finally, we suggest that the co-incidence of mergers and AGN activity is luminosity dependent, with only the most luminous quasars being triggered mostly by major mergers.Comment: 5 pages, 4 figures, 1 table. To appear as a Letter in MNRA

    Adaptive Optics Imaging of QSOs with Double-Peaked Narrow Lines: Are they Dual AGNs?

    Full text link
    Active galaxies hosting two accreting and merging super-massive black holes (SMBHs) -- dual Active Galactic Nuclei (AGN) -- are predicted by many current and popular models of black hole-galaxy co-evolution. We present here the results of a program that has identified a set of probable dual AGN candidates based on near Infra-red (NIR) Laser Guide-Star Adaptive Optics (LGS AO) imaging with the Keck II telescope. These candidates are selected from a complete sample of radio-quiet Quasi-stellar Objects (QSOs) drawn from the Sloan Digital Sky Survey (SDSS), which show double-peaked narrow AGN emission lines. Of the twelve AGNs imaged, we find six with double galaxy structure, of which four are in galaxy mergers. We measure the ionization of the two velocity components in the narrow AGN lines to test the hypothesis that both velocity components come from an active nucleus. The combination of a well-defined parent sample and high-quality imaging allows us to place constraints on the fraction of SDSS QSOs that host dual accreting black holes separated on kiloparsec (kpc) scales: ~0.3%-0.65%. We derive from this fraction the time spent in a QSO phase during a typical merger and find a value that is much lower than estimates that arise from QSO space densities and galaxy merger statistics. We discuss possible reasons for this difference. Finally, we compare the SMBH mass distributions of single and dual AGN and find little difference between the two within the limited statistics of our program, hinting that most SMBH growth happens in the later stages of a merger process.Comment: 9 pages, 4 figures, 1 table; accepted to the Astrophysical Journa

    Surface ablation and its drivers along a west–east transect of the Southern Patagonia Icefield

    Get PDF
    Glaciers in the Southern Patagonia Icefield (SPI) have been shrinking in recent decades, but due to a lack of field observations, understanding of the drivers of ablation is limited. We present a distributed surface energy balance model, forced with meteorological observations from a west–east transect located in the north of the SPI. Between October 2015 and June 2016, humid and warm on-glacier conditions prevailed on the western side compared to dry and cold conditions on the eastern side. Controls of ablation differ along the transect, although at glacier-wide scale sensible heat (mean of 72 W m−2 to the west and 51 W m−2 to the east) and net shortwave radiation (mean of 54 W m−2 to the west and 52 W m−2 to the east) provided the main energy sources. Net longwave radiation was an energy sink, while latent heat was the most spatially variable flux, being an energy sink in the east (−4 W m−2) and a source in the west (20 W m−2). Ablation was high, but at comparable elevations, it was greater to the west. These results provide new insights into the spatial variability of energy-balance fluxes and their control over the ablation of Patagonian glaciers
    • …
    corecore