488 research outputs found

    A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow

    Full text link
    We consider the statistical description of the break-up of an immiscible fluid lump immersed into a fully developed turbulent flow. We focus on systems where there is no relative velocity between the continuous and dispersed phases. In this case, particle fragmentation is caused only by turbulent velocity fluctuations. The most relevant models proposed for the particle break-up frequency and for the shape of the daughter particle size distribution are reviewed. Their predictions are compared to recent experimental data, obtained for the break-up of an air cavity immersed into a high Reynolds number, turbulent water jet. Models based on purely kinematic arguments show the best agreement with the experimental data

    Reactivity to AQP4 epitopes in relapsing–remitting multiple sclerosis

    Get PDF
    Autoantibodies against the water channel AQP4, expressed predominately in central nervous system astrocytes, are markers and pathogenic factors in Devic's disease. In this study we examined whether Multiple Sclerosis (MS) patients recognize antigenic epitopes on AQP4 that may define distinct disease subsets. We screened sera from 45 patients with relapsing–remitting MS (RRMS) and 13 patients with primary progressive MS (PMS). 23 Neuromyelitis Optica (NMO) patients previously characterized were used as assay positive/negative controls. Sera from 23 patients with Systemic Lupus Erythematosus, 23 with primary Sjogren syndrome without neurological involvement and from 28 healthy individuals were also used as controls. NMO-positive sera exhibited reactivity against the intracellular epitope AQPaa252-275, confirming previous observations. All RRMS sera tested negative for anti-AQP4 antibodies using a cell-based assay, but surprisingly, 13% of them reacted with the epitope AQPaa252-275. PMS, healthy and disease controls showed no specific reactivity. Whether these antibodies define distinct MS subsets and have a pathogenic potential pointing to convergent pathogenetic mechanism with NMO, or are simply markers of astrocytic damage, remains to be determined

    Associations of four biological age markers with child development: a multi-omic analysis in the European HELIX cohort

    Get PDF
    Background: While biological age in adults is often understood as representing general health and resilience, the conceptual interpretation of accelerated biological age in children and its relationship to development remains unclear. We aimed to clarify the relationship of accelerated biological age, assessed through two established biological age indicators, telomere length and DNA methylation age, and two novel candidate biological age indicators , to child developmental outcomes, including growth and adiposity, cognition, behaviour, lung function and onset of puberty, among European school-age children participating in the HELIX exposome cohort. Methods: The study population included up to 1,173 children, aged between 5 and 12 years, from study centres in the UK, France, Spain, Norway, Lithuania, and Greece. Telomere length was measured through qPCR, blood DNA methylation and gene expression was measured using microarray, and proteins and metabolites were measured by a range of targeted assays. DNA methylation age was assessed using Horvath's skin and blood clock, while novel blood transcriptome and 'immunometabolic' (based on plasma protein and urinary and serum metabolite data) clocks were derived and tested in a subset of children assessed six months after the main follow-up visit. Associations between biological age indicators with child developmental measures as well as health risk factors were estimated using linear regression, adjusted for chronological age, sex, ethnicity and study centre. The clock derived markers were expressed as Δ age (i.e., predicted minus chronological age). Results: Transcriptome and immunometabolic clocks predicted chronological age well in the test set (r= 0.93 and r= 0.84 respectively). Generally, weak correlations were observed, after adjustment for chronological age, between the biological age indicators. Among associations with health risk factors, higher birthweight was associated with greater immunometabolic Δ age, smoke exposure with greater DNA methylation Δ age and high family affluence with longer telomere length. Among associations with child developmental measures, all biological age markers were associated with greater BMI and fat mass, and all markers except telomere length were associated with greater height, at least at nominal significance (p<0.05). Immunometabolic Δ age was associated with better working memory (p = 4e -3) and reduced inattentiveness (p= 4e -4), while DNA methylation Δ age was associated with greater inattentiveness (p=0.03) and poorer externalizing behaviours (p= 0.01). Shorter telomere length was also associated with poorer externalizing behaviours (p=0.03). Conclusions: In children, as in adults, biological ageing appears to be a multi-faceted process and adiposity is an important correlate of accelerated biological ageing. Patterns of associations suggested that accelerated immunometabolic age may be beneficial for some aspects of child development while accelerated DNA methylation age and telomere attrition may reflect early detrimental aspects of biological ageing, apparent even in children. Funding: UK Research and Innovation (MR/S03532X/1); European Commission (grant agreement numbers: 308333; 874583)

    C+L band gain equalization for extended reach WDM-ring PON using hybrid Raman/in line EDFA amplification

    Get PDF
    “Copyright © [2010] IEEE. Reprinted from ICTON 2010. ISBN 978-1-4244-7798-2. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”In this paper, we investigate by simulation the feasibility of gain enlargement and equalization on extended reach WDM-ring PON by means of hybrid Raman/EDFA amplification. The system under analysis is composed by a bidirectional pump at 1480 nm and 16 channels (8 C band + 8 L band). The simulation describes an 80 km WDM ring with 8 nodes in which 2 channels are added/dropped. The results demonstrate gain equalization with a ripple of 2.54 dB over a bandwidth of 50 nm by using a 1480 nm bidirectional pump with 1 W and spans of EDF with a total length of 22 m

    VR-visualization of High-dimensional Urban Data

    Get PDF
    The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials

    A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the microstructure. Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments

    Measuring sub-mm structural displacements using QDaedalus: a digital clip-on measuring system developed for total stations

    Get PDF
    The monitoring of rigid structures of modal frequencies greater than 5 Hz and sub-mm displacement is mainly based so far on relative quantities from accelerometers, strain gauges etc. Additionally geodetic techniques such as GPS and Robotic Total Stations (RTS) are constrained by their low accuracy (few mm) and their low sampling rates. In this study the application of QDaedalus is presented, which constitutes a measuring system developed at the Geodesy and Geodynamics Lab, ETH Zurich and consists of a small CCD camera and Total Station, for the monitoring of the oscillations of a rigid structure. In collaboration with the Institute of Structural Engineering of ETH Zurich and EMPA, the QDaedalus system was used for monitoring of the sub-mm displacement of a rigid prototype beam and the estimation of its modal frequencies up to 30 Hz. The results of the QDaedalus data analysis were compared to those of accelerometers and proved to hold sufficient accuracy and suitably supplementing the existing monitoring techniques
    corecore