1,721 research outputs found
Understanding the dependence on the pulling speed of the unfolding pathway of proteins
The dependence of the unfolding pathway of proteins on the pulling speed is
investigated. This is done by introducing a simple one-dimensional chain
comprising units, with different characteristic bistable free energies.
These units represent either each of the modules in a modular protein or each
of the intermediate "unfoldons" in a protein domain, which can be either folded
or unfolded. The system is pulled by applying a force to the last unit of the
chain, and the units unravel following a preferred sequence. We show that the
unfolding sequence strongly depends on the pulling velocity . In the
simplest situation, there appears a critical pulling speed : for pulling
speeds
it is the pulled unit that unfolds first. By means of a perturbative expansion,
we find quite an accurate expression for this critical velocity.Comment: accepted for publication in JSTA
Thermally induced directed currents in hard rod systems
We study the non equilibrium statistical properties of a one dimensional
hard-rod fluid undergoing collisions and subject to a spatially non uniform
Gaussian heat-bath and periodic potential. The system is able to sustain finite
currents when the spatially inhomogeneous heat-bath and the periodic potential
profile display an appropriate relative phase shift, . By comparison with
the collisionless limit, we determine the conditions for the most efficient
transport among inelastic, elastic and non interacting rods. We show that the
situation is complex as, depending on shape of the temperature profile, the
current of one system may outperform the others.Comment: 5 pages, 2 figure
Radio emission from satellite-Jupiter interactions (especially Ganymede)
Analyzing a database of 26 years of observations of Jupiter from the
Nan\c{c}ay Decameter Array, we study the occurrence of Io-independent emissions
as a function of the orbital phase of the other Galilean satellites and
Amalthea. We identify unambiguously the emissions induced by Ganymede and
characterize their intervals of occurrence in CML and Ganymede phase and
longitude. We also find hints of emissions induced by Europa and, surprisingly,
by Amalthea. The signature of Callisto-induced emissions is more tenuous.Comment: 14 pages, 7 figures, in "Planetary Radio Emissions VIII", G. Fischer,
G. Mann, M. Panchenko and P. Zarka eds., Austrian Acad. Sci. Press, Vienna,
in press, 201
Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock. a systematic review and meta-analysis
Sepsis-induced myocardial dysfunction is associated with poor outcomes, but traditional measurements of systolic function such as left ventricular ejection fraction (LVEF) do not directly correlate with prognosis. Global longitudinal strain (GLS) utilizing speckle-tracking echocardiography (STE) could be a better marker of intrinsic left ventricular (LV) function, reflecting myocardial deformation rather than displacement and volume changes. We sought to investigate the prognostic value of GLS in patients with sepsis and/or septic shock
Defining and identifying communities in networks
The investigation of community structures in networks is an important issue
in many domains and disciplines. This problem is relevant for social tasks
(objective analysis of relationships on the web), biological inquiries
(functional studies in metabolic, cellular or protein networks) or
technological problems (optimization of large infrastructures). Several types
of algorithm exist for revealing the community structure in networks, but a
general and quantitative definition of community is still lacking, leading to
an intrinsic difficulty in the interpretation of the results of the algorithms
without any additional non-topological information. In this paper we face this
problem by introducing two quantitative definitions of community and by showing
how they are implemented in practice in the existing algorithms. In this way
the algorithms for the identification of the community structure become fully
self-contained. Furthermore, we propose a new local algorithm to detect
communities which outperforms the existing algorithms with respect to the
computational cost, keeping the same level of reliability. The new algorithm is
tested on artificial and real-world graphs. In particular we show the
application of the new algorithm to a network of scientific collaborations,
which, for its size, can not be attacked with the usual methods. This new class
of local algorithms could open the way to applications to large-scale
technological and biological applications.Comment: Revtex, final form, 14 pages, 6 figure
Refolding dynamics of stretched biopolymers upon force quench
Single molecule force spectroscopy methods can be used to generate folding
trajectories of biopolymers from arbitrary regions of the folding landscape. We
illustrate the complexity of the folding kinetics and generic aspects of the
collapse of RNA and proteins upon force quench, using simulations of an RNA
hairpin and theory based on the de Gennes model for homopolymer collapse. The
folding time, , depends asymmetrically on and
where () is the stretch (quench) force, and
is the transition mid-force of the RNA hairpin. In accord with
experiments, the relaxation kinetics of the molecular extension, , occurs
in three stages: a rapid initial decrease in the extension is followed by a
plateau, and finally an abrupt reduction in that occurs as the native
state is approached.
The duration of the plateau increases as decreases
(where is the time in which the force is reduced from to ).
Variations in the mechanisms of force quench relaxation as is altered
are reflected in the experimentally measurable time-dependent entropy, which is
computed directly from the folding trajectories. An analytical solution of the
de Gennes model under tension reproduces the multistage stage kinetics in
. The prediction that the initial stages of collapse should also be a
generic feature of polymers is validated by simulation of the kinetics of
toroid (globule) formation in semiflexible (flexible) homopolymers in poor
solvents upon quenching the force from a fully stretched state. Our findings
give a unified explanation for multiple disparate experimental observations of
protein folding.Comment: 31 pages 11 figure
Cost-effectiveness of a quality improvement bundle for emergency laparotomy.
Background: The recent Emergency Laparotomy Pathway Quality Improvement Care (ELPQuiC) study showed that the use of a specific care bundle reduced mortality in patients undergoing emergency laparotomy. However, the costs of implementation of the ELPQuiC bundle remain unknown. The aim of this study was to assess the in-hospital and societal costs of implementing the ELPQuiC bundle. Methods: The ELPQuiC study employed a before-after approach using quality improvement methodology. To assess the costs and cost-effectiveness of the bundle, two models were constructed: a short-term model to assess in-hospital costs and a long-term model (societal decision tree) to evaluate the patient's lifetime costs (in euros). Results: Using health economic modelling and data collected from the ELPQuiC study, estimated costs for initial implementation of the ELPQuiC bundle were €30 026·11 (range 1794·64-40 784·06) per hospital. In-hospital costs per patient were estimated at €14 817·24 for standard (non-care bundle) treatment versus €15 971·24 for the ELPQuiC bundle treatment. Taking a societal perspective, lifetime costs of the patient in the standard group were €23 058·87, compared with €19 102·37 for patients receiving the ELPQuiC bundle. The increased life expectancy of 4 months for patients treated with the ELPQuiC bundle was associated with cost savings of €11 410·38 per quality-adjusted life-year saved. Conclusion: Implementation of the ELPQuiC bundle is associated with lower mortality and higher in-hospital costs but reduced societal costs
- …