74 research outputs found

    Heart rate variability measured from wearable devices as a marker of disease severity in tetanus

    Get PDF
    Tetanus is a disease associated with significant morbidity and mortality. Heart rate variability (HRV) is an objective clinical marker with potential value in tetanus. This study aimed to investigate the use of wearable devices to collect HRV data and the relationship between HRV and tetanus severity. Data were collected from 110 patients admitted to the intensive care unit in a tertiary hospital in Vietnam. HRV indices were calculated from 5-minute segments of 24-hour electrocardiogram recordings collected using wearable devices. HRV was found to be inversely related to disease severity. The standard deviation of NN intervals and interquartile range of RR intervals (IRRR) were significantly associated with the presence of muscle spasms; low frequency (LF) and high frequency (HF) indices were significantly associated with severe respiratory compromise; and the standard deviation of differences between adjacent NN intervals, root mean square of successive differences between normal heartbeats, LF to HF ratio, total frequency power, and IRRR, were significantly associated with autonomic nervous system dysfunction. The findings support the potential value of HRV as a marker for tetanus severity, identifying specific indices associated with clinical severity thresholds. Data were recorded using wearable devices, demonstrating this approach in resource-limited settings where most tetanus occurs

    Internet of Things for Water Sustainability

    Get PDF
    The water is a finite resource. The issue of sustainable withdrawal of freshwater is a vital concern being faced by the community. There is a strong connection between the energy, food, and water which is referred to as water-food-energy nexus. The agriculture industry and municipalities are struggling to meet the demand of water supply. This situation is particularly exacerbated in the developing countries. The projected increase in world population requires more fresh water resources. New technologies are being developed to reduce water usage in the field of agriculture (e.g., sensor guided autonomous irrigation management systems). Agricultural water withdrawal is also impacting ground and surface water resources. Although the importance of reduction in water usage cannot be overemphasized, major efforts for sustainable water are directed towards the novel technology development for cleaning and recycling. Moreover, currently, energy technologies require abundant water for energy production. Therefore, energy sustainability is inextricably linked to water sustainability. The water sustainability IoT has a strong potential to solve many challenges in water-food-energy nexus. In this chapter, the architecture of IoT for water sustainability is presented. An in-depth coverage of sensing and communication technologies and water systems is also provided

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis

    Get PDF
    BACKGROUND: Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. METHODS: We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. RESULTS: We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region. INTERPRETATION: Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis

    Get PDF
    Background Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. Methods We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. Results We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67–82]), than encephalopathy (54% [42–65]). Intensive care use was high (38% [35–41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27–32]. The hazard of death was comparatively lower for patients in the WHO European region. Interpretation Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis.

    Get PDF
    BackgroundNeurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome.MethodsWe conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models.ResultsWe included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region.InterpretationNeurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Flüssigmembran-Elektroden XIV

    No full text

    Automatic determination of arsenate in drinking water by flow analysis with dual membrane-based separation

    Get PDF
    The sequential application of a polymer inclusion membrane (PIM), composed of poly(vinylidenefluoride-co-hexafluoropropylene) and the anionic extractant Aliquat 336, and a microporous polytetrafluoroethylene (PTFE) gas-permeable membrane was utilized for the first time to develop a flow analysis (FA) system, for the automatic determination of trace levels of arsenate (As(V)) in drinking water as arsine. The system incorporated a flow-through extraction cell for separation and preconcentration of arsenate and a gas-diffusion cell for the separation of arsine prior to its spectrophotometric determination based on the discoloration of a potassium permanganate solution. Under optimal conditions the FA system is characterized by a limit of detection of 3.0 μg L-1 As(V) and repeatability of 1.8% (n = 5, 25 μg L-1 As(V)) and 2.8% (n = 5, 50 μg L-1 As(V)). The newly developed FA method was successfully applied to the determination of arsenate in drinking water samples in the μg L-1 concentration range
    corecore