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Chapter 4
Internet of Things for Water
Sustainability

Abstract The water is a finite resource. The issue of sustainable withdrawal of
freshwater is a vital concern being faced by the community. There is a strong
connection between the energy, food, and water which is referred to as water-food-
energy nexus. The agriculture industry and municipalities are struggling to meet the
demand of water supply. This situation is particularly exacerbated in the developing
countries. The projected increase in world population requires more fresh water
resources. New technologies are being developed to reduce water usage in the field
of agriculture (e.g., sensor guided autonomous irrigation management systems).
Agricultural water withdrawal is also impacting groundand surface water resources.
Although the importance of reduction in water usage cannot be overemphasized,
major efforts for sustainable water are directed towards the novel technology
development for cleaning and recycling. Moreover, currently, energy technologies
require abundant water for energy production. Therefore, energy sustainability is
inextricably linked to water sustainability. The water sustainability IoT has a strong
potential to solve many challenges in water-food-energy nexus. In this chapter, the
architecture of IoT for water sustainability is presented. An in-depth coverage of
sensing and communicationtechnologies and water systems is also provided.

4.1 Introduction

When the well runs dry we know the worth of water.—Benjamin Franklin

The survival of the humanity is contingent upon the availability of water. The
aquatic ecosystems that include groundwater, oceans, river, lakes, streams, and
estuaries supply a wide range of resources and services to the community [18, 56].
These are importantfor water storage, regulation of water quality and quantity, food
provision, recreation, and transportof water and substances to downstream [14, 92].
The droughts and flooding impacts the normal functionality and is a main cause
of reduction in its tolerance and diversity, a vital factor for sustainable community
[63, 126, 131]. The contents of the chapter are shown in Fig. 4.1.
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Fig. 4.1 The internetof
things for sustainable water

The water, energy, and land-based systems are linked in many different ways[39,
63, 107]. The precipitation patterns are changing rapidly due to the ocean and
atmosphere warming [14, 17, 31, 33, 43, 101]. The most visible effects of these
phenomenainclude increase in the durationof dry periods, higher evaporation, and
rapid snow melt [46]. These cascading effects propagate to the water cycle, which
encompasses complete and dynamic processes of water movement and circulation
in the Earth system. Due to global warming effects, these water cycle processes
(see Fig. 4.2) are exhibiting unpredictable increase and decrease with abundant
(flooding) or little to no water availability (drought)[33]. The decrease in the amount
of available water is a major threat to entire ecosystem. Similarly, flooding poses a
major risk to communities and infrastructure.

Significant changes are also being observed in streamflow patterns with peak
flows moving to the beginning of the year [111, 133]. The increase in amount
of rain as compared to the snow is also impacting water storage facilities. The
rate of evapotranspirationis a major element of the water cycle, which represents
the evaporation of water from different sources such as oceans, lakes, plants,
soils, and rivers [93]. Its rate is impacted by wind, solar radiation, humidity, and
wind. Consequently, water content of soil, water runoff, and groundwater recharge
are impacted by these variations in rate of evapotranspiration [33, 78]. Among
these factors, the soil water content is significant because of its implications in
agriculture and air evaporation and temperature. This increase in evaporation is
considered to be a big factor contributing to increases in dry periods and shorter
droughts on seasonal basis [42]. These changes in precipitation patterns are also
impacting the municipal water supplies [103]. For a reliable water supply to cities,
the utility management companies are facing many challenges in water storage
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Fig. 4.2 The water cycle

due to projected decline in supply and increasing population. World population
is expected to reach 9.8 billion people by 2050, with corresponding increase of a
25 to 70% in food production [129]. The world food production challenges span
beyond UN agenda of eradicating malnutritionand poverty by 2030. According to
WHO, daily minimal human demand of water is 1.84 gallons per day, whereas the
recommended water need to maintain adequate hygienic is 5.28 gallons [109]. For
a total humanpopulationof 7.7 billion, the global water need of freshwater is 40.65
billion gallons. UN sustainable development goal (SDG 6) is about providing safe
water [110].

The crop and landscape irrigation also depends on the water, being the largest
withdrawal of water. Although 3/4 of our planet is covered with water, only 2.5%
constitutes the freshwater. Approximately 70% of the available freshwater is frozen
in glaziers and the ice caps. The residual 0.75% of freshwater is in swamps,
subsurface, lake and river, living organisms, and the atmosphere. The 70% of the
remaining 0.75% of freshwater is utilized in irrigation.

Water quality is another major challenge. The high streamflow takes sediments
and pollutants to the water. Whereas, the well below-average rates of streamflow
also result in decrease of water quality. Similarly, heavy precipitation, increased
intensity and scale of wildfires, impacts fertilizer usage contributes nutrients,
contaminants,and sediments from the surface water to downstream [35].

The freshwater aquifers and wetlands are also vital for the water sustainability.
These are being underminedby many factors including changing sea levels, surface
and groundwater usage, and storm surges [16]. The saltwater gets mixed with
underground and surface water due to rise in sea levels. The saltwater also flows
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upstreamto make up the deficiency in river flows that is caused by high withdrawals.
Moreover, storm surge and rise in sea levels also impact the urban underground
infrastructuressuch as storm drainage and sewer treatment.

In water-energy nexus, the demand of water for energy productionis increasing
rapidly. Water is needed in hydro-electric dams for turbine, in thermo-electricpower
plant for steam, and cooling of the equipmentin nuclear power generation to absorb
heat. Likewise, the energy is needed to draw out water from rivers and aquifers, to
transportit to storage and treatmentfacilities, to distribute water supply, and finally,
to collect waste water. Collectively, energy and water need land resources.

4.2 Water Sustainability IoT

The water sustainability IoT contain components such as water things, sens-
ing, water quality measurements, cleaning and treatment technologies, and water
resource management. The elements of the water IoT are shown below:

• Groundwater, fresh water, and surface water
• Precipitation, river flow, lakes, and wetlands
• Evapotranspiration,hydrology, and hydraulics
• Aquifer and runoff
• Irrigation, recycling, and cleaning

4.3 IoT as an Enabler for Sustainable Water

In this section, the IoT paradigm is discussed as an enabler of sustainable water.

4.3.1 Advantages of Sustainable Water IoT

The water IoT is envisioned to provide accurate decision support systems to guide
technological and societal progress in water use. It enables annual precipitation
monitoring and river-flow variation observations. Accordingly, very heavy precipi-
tation, dry periods, and seasonal and short-and long-term droughtscan be predicted
at spatial and temporal scale. Moreover, based on the IoT sensing technologies
for withdrawal of groundwater, and aquifer recharge, the availability of demand
can be ascertained. The surface and groundwater supplies are decreasing because
of the consumption, withdrawal, precipitation, runoff, combined with changes in
consumptionand withdrawal. The determinationof variations in surface water and
groundwater usage patterns will help to attain substantial freshwater aquifers and
wetlands. The total precipitation measurements can be used to forecast potential
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flooding threats. Therefore, risks to economy, community infrastructure, human
health and property, and humansafety can be reduced.

The state-of-the-art IoT technology, ecological standards, and indicators are
useful in achieving sustainability goals. There are many advantages of the water
IoT for sustainable community development. The cumulative water withdrawals
scale and impact can be modeled on ecosystem through IoT data collection tools.
The development of novel sensing technologies enables monitoring of water IoT
such as wetlands and lake inflows. Accordingly, based on the sensing of water
IoT, better approaches can be developed for water sustainability indicators which
will contribute to the aquatic and terrestrial ecosystem resilience. Other important
enabling sensing includes water and air temperatures, runoff, and precipitation.

Using the integrated water IoT paradigm, the connection between ecological
parameters and hydrology flow regime and groundwater can be better understood
through the identification of impact of flow regime thresholds. One example is
flow variations link to invasive species. The water quality can be improved by
reduction of pollutants caused by human activities. The IoT paradigm can also
inform deployment of new systems for reduce water use. Moreover, the water
cleaning and recycling technologies can be developed and integrated into the system
through sensing of the water pollutants, nitrogen, and sediments. Accordingly,
lake and water quality can be improved. Moreover, critical data sets (e.g., data
related to stream and river flow, groundwater, waterborne disease, water usage, and
paleoclimate reconstruction) can enable advance research and better understandof
the echosystem (Fig. 4.3).

4.3.2 Research Challenges Needs in Sustainable Water IoT

In this section, the research needs in support of all aspects of the sustainable water
ecosystem are discussed.

• The better insights are needed in relationship between groundwater and surface
water through improvements in water IoT monitoring tools and infrastructures
[34, 48].

• In the ecology domain, a particular emphasis is needed on sensing of ecological
parameters and lakes, wetlands inflows. The connection between point and non-
point sources against freshwater supply also needs more investigation [45].

• In urban localities, more advanced real-time pathogens, contaminantsand chem-
ical compoundsensing technologies are needed. Novel techniques are needed for
nutrientreduction, detection of new type of contaminants,spill detection, source
tracking [60].

• There is need of whole cycle measurements integration into sustainable water
IoT with emphasis on communication networks to eliminate dependency on
detached measurements to assess the effects of climate change, land use, water
conservation activities including water source and discharge [44].
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Fig. 4.3 The sustainable development goals related to water sustainability

• Other importanttechnology needs for sustainable water integration are in the area
of inexpensive storage and metal removal [22, 127].

4.4 Water Sustainability IoT Monitoring and Applications

The water quality is indicator of the state of biological, chemical, and physical
properties of water [115, 123]. The importance of the water quality for sustainable
environment and ecosystem cannot be overemphasized [130]. The water quality
measurements in river and lakes and other water bodies are important to identify
inadequate oxygen supply caused by extra amounts of nutrients and algal blooms.
Through monitoring the impact of the climate change, human activities can be
better understood [57]. Accordingly, it enables better decision and policy making.
Moreover, the impact of the sediment loading can also be analyzed by using the
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turbidity measurement. The monitoring can be done by using different approaches
such as sampling, continual monitoring, and remote sensing are all used to collect
water quality data in estuarine and coastal ecosystems, surface and ground water,
stormwater, and ballast water [57]. In this regard, novel pathogens, nutrients, and
chemical contaminantssensing technology are needed.

Similarly, the water monitoringin urban areas includes:

• Accession and transport of rainfall and runoff data for sewage and stormwater
networks [105]

• Management of stormwater retentionbase [122]
• Water supply infrastructuremonitoring [95]
• Pipeline system to identify issues related to water supply shortage [54]
• Industrial activities impacted water quality monitoring[69]

For sustainable water IoT, development of novel monitoring technologies for the
entire water cycle is needed. The sustainable water IoT is envisaged as to integrate
different type measurements at large scale. This paradigm removes the issue of
single point failures and insufficient data for decision making. It also gives insights
into the baseline conditions at different spatial and temporal scales (including
natural perturbationsand industrial impacts). Accordingly, various relevant baseline
indicators can be utilized for policy making and remedial actions by providing
accurate and certain data. The sustainable water IoT enables development and
integration of different types of systems for robust evaluation of water ecosystems.
The predictive models can be developed and integrated into the paradigm for
different water use scenarios (e.g., drinking water, discharge, and industrial use).

4.4.1 Applications

The importantwater monitoring applications are discussed below:

• Potable water monitoring. For chemical properties including pH, nitrates, and
dissolved oxygen (DO).

• Chemical leakage monitoring. The extreme pH and low dissolved oxygen levels
are used to identify spills because of sewage treatment plant or other pipeline
issues in rivers.

• Pollution levels monitoring: Temperature,pH, salinity, nitrates dissolved oxygen
monitoringin seawater.

• Corrosion and limescale deposit monitoring: The pH, conductivity, Calcium
(Ca+) temperature, and magnesium (Mg2+) concentrationsmonitoring.

• Aquatic life conditions monitoring. Water conditions of aquatic animals such
as fish.

• Swimming pool monitoring: The pH, oxidation-reductionpotential (ORP), and
chloride values to assess water quality in swimming pools.
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4.4.2 Source Water Monitoring

Source water is impacted by different factors including seasonal weather changes,
and upstream discharge. The source water quality monitoring enables selection of
proper treatment options. Groundwater has low content of natural organic matter
(NOM) and therefore can be disinfected by using chlorine disinfection techniques.

4.4.2.1 Surface Water

Surface water comes from rivers, lakes, and other reservoirs. It is the vital source
of water production. The groundwater has high content of natural organic matter
(NOM) and needs proper disinfection techniques.

The importantwater monitoring parameters are discussed below:

• Ammonia. The ammonia level can change remarkably in all seasons and
requires consistent monitoring. Ammonia reaction chlorine disinfection leads to
formation of chloramines which produce different issues [51].

• Free Chlorine: The free chlorine is mixed to the groundwater for ammonia
transformationto chloramines, which breaks by further chlorine, hence making
free chlorine as leftover disinfectant. The free chlorine monitoring is done to
achieve desired levels. It is also used to eliminate amalgamation of manganese
and iron and manganese for subsequent removal through filtration [85].

• pH. The pH is used for chlorine disinfection process optimization. It indicates
the acidity and alkalinity of water [25].

• Total organic carbon. The TOC is measure of the carbon present in organic
compounds of the water. It guides selection of proper treatmentmethod through
byproduct precursor’s removal [79].

• UV254. The UV254 gets its name from its wavelength of 254nm. It is used
to measure organic matter (OM) in water. The OM reacts to chlorine to form
disinfection byproducts (DBPs). Different events impact the OM in the water
such as storm, increase in nutrientsfrom humanactivities [128].

• Turbidity. The turbidity is the indicator of water transparency loss caused by the
suspended particulates. The large turbidity levels negatively impact the disinfec-
tion process by preventing the ultraviolet disinfection. Turbidity variations also
indicate weather events such as rain and floods [96].

4.5 Sensing in Sustainable Water IoT

The real-time sensing is a vital component of the sustainable water IoT. The
monitoringapplications enabled throughthis sensing mechanism are being adopted
by industry. It also enables improved efficiency water treatment and recycling
operation. A detailed overview of water sensing technologies is given in next
section.
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4.5.1 pH Sensing

A common measurement of the water is pH, which is equivalent to negative of
the logarithmof hydrogen-ion concentrationin water. It is used to measure acid and
alkaline properties of water on a scale of 0–14, where 7 is considered as neutral. The
pH value higher than 7 denotes alkalinity, whereas the values less than 7 indicate
acidity. An increase or decrease of 1 in acidity or alkalinity represents ten times
change. Different types of the pH sensors are explained below:

4.5.1.1 Combination (Electrochemical) pH Sensor

The combination(electrochemical) sensor is a widely used method to sense pH
values [10]. It consists of a reference and measuring electrodes. Where the actual
detection of the pH variations is done based on the measurement electrode and
reference electrode provides a steady signal for comparison purpose. An impedance
based metering instrumentis used for pH value visualization which converts milli-
volt signal to pH values.

4.5.1.2 Three-Electrode pH Sensor

Three-electrode pH sensor also referred to as differential pH use three electrodes for
pH measurements[55]. Where the differential detection of the pH variations is done
based on the measurement of two electrodes and reference metal ground electrode
provides a steady signal for comparison purpose. Three-electrode pH sensor is less
error-prone in terms of reference signal.

4.5.1.3 Laboratory pH Sensor

The laboratory pH sensor is a type of electrochemical pH installed in 1.2 cm
glass/plastic unit. This type of sensor is used in laboratory for learning and discovery
purpose. This is also used in environmental monitoringand pool sampling and can
be easily tailored to match desired application requirements [82].

4.5.1.4 Single-Chip pH Sensors

The single-chip pH sensors are used for pipeline and underground tank monitoring.
It is designed to provide continuous monitoring of the pH values. Its robust design
can sustain harsh environment with capability to work for longer duration for
durationwithout interruption[41].
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4.5.2 Conductivity Sensing

The electrical conductivity, reciprocal of resistivity, is the measure of the capability
of a solution or medium’s electric conductance [80]. Without the presence of ions,
the water is not a high conducting medium. Therefore, conductivity measure indi-
cates the amount of ion present in water. The electrical conductivity measurements
can be presented in different units (e.g., ion concentration TDS, and salinity). It
is expressed in micro-Siemens per centimeter, µS/cm, micro-Siemen. For higher
conductivity values are also expressed in milli-Siemens. There are several different
conductivity measurementunits in use today.

4.5.2.1 Conductivity Measurement Units

Conductivity measurements are often converted into TDS units, salinity units, or
concentrations. These units of measurements are explained in the following:

• Total dissolved solids. TDS is the indirect measure of number of ion amount,
measures through electrical conductivity, that is indicated as parts per million
(ppm) or mg/l [94]. In environment, where highly dissolved ionic solids are
present, the TDS measurements produce accurate results. The TDS is also being
used in water treatment industry.

• Salinity. It is also an indirect measure which is usually expressed as ppt. Both
TDS and salinity measurements are sensitive to temperature, ion types, and
concentration.Accordingly, one unit can be converted to another [84].

• Concentration. Based on the knowledge of the composition of the ions, the
concentrationcan be ascertained from the conductivity [8].

4.5.2.2 Conductivity Sensors

The electrical conductivity sensors are based on inductive, 2-electrode, 4-electrode
based methods. These electrical conductivity measurements from these sensors can
be changed to salinity, total dissolved solids, and concentration. Different types of
conductivity sensors are discussed in the following:

Contact-Based Conductivity Sensors The contacting conductivity sensors are
used to conductivity by making a physical contact, from two sides, to the understudy
material [90]. These sensor sides are made by using different materials such
as platinum, graphite, steel. An alternate current (AC) waveform is applied and
transmitted through once, which then propagates through sample being sensed.
Accordingly, the signal is received at the other side where its intensity is used to
measure the conductivity in TDS, or micro/milli-Siemens.
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Fig. 4.4 A four-electrode conductivity sensor and an integrated temperature sensor unit. (a) Lon-
gitudinal sectional-view geometry. (b) Transversal sectional-view geometry. (c) Actual sensing
unit [90]

Inductive Conductivity Sensors The inductive conductivity sensors, also called
the toroidal conductivity sensors, work on the principal of magnetic inductionby use
a two coil (antenna) induction system in plastic assembly. The transmitterantenna
induces a magnetic field that produces an electrical current on the understudy
sample. The receiver antennameasures the magnetic field, where the corresponding
current intensity indicates the ion concentration. Due to its ability to remove
polarizing effects and fouling resistant, the inductive sensor produces high quality
measurements as compared to the contact-based conductivity sensor. The toroidal
sensors are being used in sea water monitoring.A four-electrode conductivity sensor
and an integrated temperaturesensor unit are shown in Fig. 4.4.

Conductivity in Water Treatment Based on the application need, various levels
of conductivity values are used to assess the purity of the water (e.g., drinking
water generally has the conductivity value of around1 milli-Siemens per centimeter,
highly pure water has the conductivity values are less than 1 micro-Siemens per
second).

The conductivity levels of the different liquids are given in Table 4.1 [100].

4.5.3 Dissolved Oxygen Sensing

The oxygen dissolved per unit of water is called dissolved oxygen (DO) [83]. Water
gets oxygen throughdifferent ways:

• The aeration also known as movement by turbulence
• Through diffusion in surroundingair
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Table 4.1 The conductivity
levels of the different liquids

Liquid type Conductivity level
Fresh water 0–1 mS/cm
Ultra-purewater 0.00005 mS/cm
De-ionized water 0.00005–0.001 mS/cm
Reverse osmosis water 0.00005–0.2 mS/cm
Drinking water 0.20–0.80 mS/cm
Slightly salty water 1–45 mS/cm
Sea water 45–73 mS/cm
Highly salted water 72+mS/cm

Wind speed

Turbulent mixing

Water column

Shear velocity

Turbulent mixing

Upwelling

Sediment column Downwelling Upwelling

Sediment–water
interface

Air–water
interface

Photosynthesis

Respiration

+O2

+O2

–O2

–O2

Fig. 4.5 A schematic side view showing major processes controlling stream and benthic dissolved
oxygen concentrations[9]

• Aquatic plants
• Plant waste by photosynthesis in water column
• Atmosphere

Still water sources (e.g., lakes) have low oxygen as compared to the running
water source such as streams and rivers. A schematic side view showing major
processes controlling stream and benthic dissolved oxygen concentrationsis shown
in Fig. 4.5. The DO is a vital indicator of the quality of the water and aquatic life
as oxygen is must for breathing. Different types of DO sensors are explained in the
following.
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4.5.3.1 Galvanic DO Sensor

The galvanic DO sensors use a cathode and anode with an oxygen permeable
membrane to separate these two from the sample understudy water [9, 37]. The
purpose of the permeable membrane is to permit oxygen contained in the sample
to be diffused in the instrument, accordingly, the cathode reduces it there. Due
to this chemical reaction, an electronic signal is generated that propagates from
cathode to anode, and subsequently into the sensor, where the difference in pressure
is measured that changes according to the samples oxygen’ s pressure. Because the
diffusion rate and partial pressure increase with oxygen concentration, there is a
proportionalincrease to the current.

4.5.3.2 Optical Dissolved Oxygen Sensors

A die is used in the optical dissolved oxygen sensor [66] to sense wavelength
of the light. Then a paint layer of oxygen is placed on the dye which molecules
interact with iluminescence. It acts as a filter for other compounds. The color of the
die changes to glowing red when it is exposed to the light. The sensor measures
luminescence from the emitted light by using the photo-diode, which is compared
to reference value to ascertain oxygen dissolved in water.

4.5.4 Eutrophication and Nutrient Sensing

Eutrophication is unrestrained intake and enrichment of nutrients (e.g., nitrogen
and phosphorus) which mostly come from anthropogenic sources (e.g., human
activities) [53, 116]. This issue is being observed in reservoirs, rivers, estuaries,
lakes, and other coastal regions. The presence of high nutrients concentrations
leads to productionof toxins, hypoxia, fish kills, and harmful algal blooms (HABx)
that are harmful to aquatic life and humanity [11, 13, 36, 71]. These nutrients are
carried along with agricultural runoff, domestic yard fertilizers and detergents, fossil
fuels combustion caused atmospheric deposition, stormwater, wastewater. Due to
infeasibility of mitigation, preventing that high intake in lakes, rivers, and oceans
through nutrient sensing and in situ measurements is a viable option to avoid
potential problems to the ecosystem. Accordingly, compliance limits for nutrient
discharges can be established. The nutrient sensing also enables other policy level
decisions such as flow rate and treatment options at water bodies. It also provides
insights intothe relationshipof geochemical, hydrological, and biological processes.
With the increasing severity and intensity of HABs, there is a need of in situ nutrient
sensors for nitrate, ammonium, nitrite, ammonia, total phosphorus, total nitrogen
and soluble reactive phosphorus with strong emphasis on the nitrate and nitrite
sensors. The nutrientssensing technologies are discussed in the following:



126 4 Internetof Things for Water Sustainability

4.5.4.1 Optical Nutrient Sensor

It works by using advanced spectral absorption (UV) [113] through a photometer
and provides accurate and high resolution, and chemical-free fast response time.
However, it is expensive and only senses nitrate. Moreover, the energy consumption
of the sensor is high. It can operate in harsh environments such as blue-ocean
nitraclines, storm runoff in lakes and rivers, and streams [72].

4.5.4.2 Wet-Chemical Sensor

It operates on the principal of wet-chemical calorimetric reaction with sensing
through photometry [6]. It also provides accurate high resolution measurements of
phosphate, ammonium, and nitrate. It is suitable for point and non-point source
nutrient measurements in different environments (e.g., lakes, reservoirs, rivers,
streams, rivers, canals, and channels, estuaries, and oceans) It supports real-time
measurementof dissolved phosphate.

4.5.4.3 Ion-Selective Electrodes Sensor

It operates on direct potentiometry between a reference electrode and a detecting
electrode [24]. It can sense ammoniumand nitrate. However, it has low resolution
as compared to the wet-chemical sensors and optical sensor. The accuracy of this
sensor is also sensitive to the ionic interference.

4.5.5 Water Flow Sensors

The water flow and discharge measurements are important to ascertain the water
amount flowing through a channel. These sensors are also used to predict flooding.
In flow rate measurements, different inferential approaches such has change in water
velocity and kinetic energy are employed. The different types of water flow sensors
are explained in the following [50]:

• Rota-meter. A rotameter is used for volumetric flow rate measurement of fluids
in a closed tube. It works by allowing flow to the cross-sectional where the travel
of the flow changes and accordingly can be measured [59].

• Magnetic-flow meter. A magnetic flow meter is a flow measurement instrument
that works on the voltage induction principal. It measures the flow by using a
magnetic field which causes difference in potential correspondingto the velocity
of flow normal to flux lines [52].

• Turbine flow meter. A turbine flow meter is used to sense the volume of the flow
by using the rotationof the blades caused by the movementof flow. By measuring
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the rotor velocity which is directly proportional to the fluid velocity, it provides
accurate measurements [3].

• Venturi-tubeflow meter. Venturi meter is used to measure flow by using a pipe’s
converging section to induce an increase in velocity of low, which leads to a
proportionaldropin pressure that is used to deduce flow rate can be deduced. The
water supply industry uses Venturi-tubeflow meter for flow measurements [62].

4.5.6 Temperature Sensing

A temperature sensor, as the name indicates water temperature measurement
instrument [114]. The different types of temperature sensors are explained in the
following:

• Thermocouple. A thermocouple uses two different types of electrical conductors
which are used to form junctions at two different temperatures [67]. A ther-
mocouple generates a voltage that depends on the temperature (thermo-electric
effect). Accordingly, the voltage interpretationprovides temperaturevalue.

• Resistance Temperature Detector. A RTD determines temperature by using the
electrical resistance of the sample under study which changes with the change in
temperature[5].

• Thermistor. The electrical resistance of the thermistor changes with temperature
and accordingly is used to measure temperature [120].

4.5.7 Satellite Sensing

The water remote sensing is used for recording the water color spectrum (color of
water body) and is based on optics and water’s apparent optical property [19, 47].
It is used to sense presence of different natural components of the water. When
the light field is applied to water, the angular distribution of the field impacts the
water color depending on the type and amount of water substances. Therefore, the
concentrations of optically active substances are determined with this distribution
changes [30].

The reflectance of the light from the water surface is measured using different
types of optical measurement device such as radiometers, and spectrometers
mountedon air- and space-born devices. The water quality is studied from different
parameters such as chlorophyll-a and suspended particulate matter concentra-
tion, where high amount of detected concentrations of these parameters show
eutrophication-causedalgal bloom (HAB).

The Ocean Color Radiometry Virtual Constellation (OCR-VC) is a system to
produce data sets by using ocean color radiometry satellites to assess the climate
change impacts [38].
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The various ocean color radiometry networks are listed in the following:

• InternationalNetwork for Sensor Inter-comparison and Uncertainty Assessment
for Ocean Color Radiometry (INSITU-OCR). The purpose is to integrate and
visualize different remote sensing tools for satellite sensor inter-comparisons and
uncertainty assessment for remote sensing products

• Ocean Color Essential Climate Variables (ECV) [97]
• Global Climate Observing System (GCOS) [20]
• InternationalOcean Color CoordinatingGroup (IOCCG) [136]

4.6 Sustainable Water IoT Technologies and Systems

In this section, the sustainable water IoT technologies and systems are discussed.

4.6.1 Water Pollution Control

The discharge of toxic substances due to humanactivities (e.g., herbicides, domestic
wastes, and insecticides) is one of the main factors contributing to the water
pollution [68, 91]. Various types of compounds and chemicals are being detected
in water sources indicating the severity of this issue. The other water pollutants
come from livestock farms, waste from food processing plants, metals and chemical
waste. Due to various types of water pollutants, a range of diverse techniques and
methods are being used in water treatment. An architecture of a low-cost sensor
network for real-time monitoring and contamination detection in drinking water
distribution systems is shown in Fig. 4.6. The surface water and groundwater are
two types of drinking water which generally require treatment for following types
of contaminants[70, 132]:

• Biological contaminants (e.g., disease-causing bacterium, protozoa phylum,
viruses, and parasitic worms [2]

• Inorganic chemicals (e.g., nitrogen species, metals, oxyanions, and radioactive
nuclide) [134]

• Organic chemicals (e.g., natural organic matter (NOM) and faux organic chemi-
cals from agro-industrial products) [7]

The major water treatment technologies are [15]:

• Coagulation. The solids are separated through the sedimentation process. It is
then followed by the filtration process because the slowly settling tiny particles
are hardto remove throughthe settling. Therefore, coagulation (grouping) is done
throughchemicals (e.g., alum) to form large particle groups.

• Membrane process. This treatmentmethod is used filter out undesired pollutants
from water. A membrane also acts like a filter with a capability to block certain
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Fig. 4.6 An architecture of a low-cost sensor network for real-time monitoringand contamination
detection in drinking water distribution systems [58]

constituents. It is employed in ground and surface water to obtain water for
drinking, and to wastewater for industry needs.

• Adsorptionand Biosorption. Adsorption refers to surface accumulation different
components. It is a gas– or liquid–solid phenomenon. The biosorption process
includes ion exchange (arsenic removal), complexation (complex association),
surface precipitation, chelating (bonding), and coordination.

• Dialysis. The dialysis water treatment process is used to remove microbial and
chemical compounds in two steps: (1) pre-treatment, where compounds are
eliminated from the source water to get an early stage clean water, and (2) de-
activating the leftover chemical and microbial compounds.

• Foam flotation. In dissolved air flotation(DAF) is a waste water treatmentprocess
oil and solids are removed. In this process, the high pressure air is dissolved in
the water. Then, at atmospheric pressure, it is released in through flotation. The
bubbles carry suspended matter adhered to them which is subsequently removed
throughskimming.
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• Reverse Osmosis. Reverse osmosis (RO) uses the membrane process to filter
dissolved compoundsand suspended particles from water. Activated carbon (AC)
filtration is also used to filter pesticides, chlorine, and organic solvents which are
not filtered by RO. The sediment filtration removed silt particles.

• Photo catalytic degradation. It is used for reduction and oxidation of metals,
photo catalytic reduction of oxyanion contaminants (e.g., NO3

−, ClO4
−), and

destructionof per/polyfluoroalkyl substances (PFAS). The semiconducting mate-
rial is also employed as heterogeneous photocatalyst.

• Biological and Bio-analytical methods. This process is based on the filtration of
oxygenated water via different types of granular solids such as sand, coal, and
granular activated carbon (GAC).

4.6.2 Ocean Acidification and CO2 Mitigation

Ocean acidification (OA) is the process in which the acidity of ocean increases
(decrease in pH value below 7) [40]. The UN Conference on Sustainable Devel-
opment has declared OA as a major challenge to economically and ecologically
ecosystem sustainability. The main cause of the ocean acidification is increase in
CO2 concentration from higher emissions which leads to chemical changes in sea
water. Local and coastal pollution is also attributed to the ocean acidification. This
process is harmful for the marine habitats in the ocean ecosystem. The following
two methods are used for OA sensing [28]:

• OA Observing Vessels. In this approach, the sampling is done using research
ships to sense variations in seawater carbon related chemical properties. The
pH is the main parameter being measures using pH sensors. Moreover, by using
this approach ocean acidification mitigation methods can be deployed at a large
scales [21].

• Buoys and Autonomous Systems. For continuous and autonomous carbon
measurements, the buoys are being used for high frequency measurements to get
insights into variability in ocean acidification over diurnal, monthly, and yearly
scale. These can be used to measure pH, bio-geo-chemical, and CO2 in coral reef
waters, sea, and coastal areas [99].

• Hydrographic Cruises. This approach is used to obtain for physical, chemical,
and biological measurements of full vertical column base in harsh sea environ-
ments [23]

Although, OA can be mitigated throughby limiting the emissions of atmospheric
CO2 levels, other options include restoration of wetlands, planting new forests and
reforestation to increase absorption of atmospheric CO2 levels, and by adding alka-
line minerals to seawaters. Through IoT based decision support system following
developments can also help in OA mitigation:
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• Sensing of runoff and pollutants from fertilizers
• Digital fisheries management approaches
• Monitoring and protection of sediment loading and development of application

of marine spatial monitoring
• Monitoring of local emissions sulfur dioxide and nitrous oxide emissions from

coal plants

4.7 The Sustainable Water Case Studies

The case studies are discussed in the following:

4.7.1 Open Water Web

The open water data is an initiative of Advisory Committee on Water Informationto
integrate scattered water informationinto an open data web by leveraging prevailing
infrastructure,systems for the purpose of development of novel water solutions and
models, and for data sharing purpose [4]. The different componentsof the open data
web are shown in Fig. 4.7. The three different use cases of open water web are given
below:

• The National Flood Interoperability Experiment (NFIE). The purpose of this
experiment to develop next-generation of flood hydrology tools.

• Water Supply Decision Support System. A tool to past and future water interac-
tions in lower Colorado River basin.

• Spill response/Water Quality. To get better insights into the impact of spills on
public health.

Fig. 4.7 Different componentsof open water web
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4.7.2 Waspmote Smart Water

The Waspmote Smart Water platform contains low energy consumptionsensors for
real-time sensing in harsh environment for remote water quality monitoring [61].
This platform supports real-time measurements with connection to cloud online
data processing. It is used for conductivity, dissolved oxygen, temperature,pH, and
transparency loss. It supports following type nutrientand dissolved ions sensing:

• Fluoride (Fluoride (F−), Nitrate (NO3
−), Calcium (Ca2

+)
• Chloride (Cl−), Silv er (Ag+), Cupric (Cu2+)
• Potassium (K+), Iodide (I−), Fluoroborate (BF 4

−)
• Ammonia (NH4), Perchlorate (ClO4), Magnesium (Mg2+),
• Nitrite (NO2

−), Lithium (Li+), Sodium (Na+), Bromide (Br−)

4.7.3 National Network of Reference Watersheds

The National Network of Reference Watersheds (NNRW) is a system of watersheds
and monitoringnetworks with minimal disturbances [75]. These reference (pristine)
watersheds are safeguarded from the impacts of human activities and related
changes. These reference watersheds are used for empirical measurements of
variations in water quality, physical, biological, and chemical properties of soil and
vegetation. Accordingly, the data collected by these measurements is comparedwith
data collected from disturbed watersheds to assess impacts.

4.7.4 Hydrometeorology Testbed

The hydrometeorology testbed (HMT) is a testbed at the Weather Prediction Center
(WPC) [32, 135]. It is used for enhanced forecasting of extreme precipitation,
and forcings, hydrologic prediction, through experiments and advanced hydrom-
eteorological empirical observation. Schematic diagram showing the orientation
of the soil probes and surface meteorological observations used at a typical soil
moisture observing station is shown in Fig. 4.8. At HMT, two types of experiments
are conducted which are discussed in the following.

4.7.4.1 Winter Weather Experiment

In this experiment, the precipitationalgorithms are applied to various models during
different weather events to observe transitionzones of precipitationtypes. Their use
is analyzed as input to manually produced empirical forecasts. The winter weather
event ensemble predictability is evaluated using a tool that uses ensemble clustering.



4.7 The Sustainable Water Case Studies 133

Fig. 4.8 Schematic diagram showing the orientationof the soil probes and surface meteorological
observations used at a typical soil moisture observing station [135]

4.7.4.2 Flash Flood and Intense Rainfall Experiment

In this experiment, short-range flash flood forecasts are produced by using high
resolution data to synthesize atmospheric and hydrological guidance. This exper-
imental hydrologic guidance includes parameters such as runoff, soil saturation,
probabilities of quantitative precipitation forecasts (QPF) exceeding recurrence
intervals, and streamflow anomalies.
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4.7.5 WaterWatch

The WaterWatch is comprehensive tool that provides past and current streamflow
data in real time. It supports data visualization in form of graphs, tables, and
maps [119]. WaterWatch is used to produce multiple stream maps with following
features:

• 30 years of location data of approximately USGS 3000 streams gages
• Color maps for streamflow conditions and historical streamflow
• GUI to get stream stage (water elevation) and flow graphs
• identificationof location of occurrence of extreme hydrologic events (e.g., floods

and droughts)
• The real time, average daily, and 7-day average streamflow stream gage-based

maps with flood, drought, high flow, and below-normal conditions
• Support for hydrologic unit code (HUC), the stream gage-based maps in

hydrologic regions

A list of tools in the WaterWatch toolkit is given in Table 4.2 [117, 119].

Table 4.2 Tools in WaterWatch toolkit [117, 119]

WaterWatch tool Description
Hydrologic unit runoff maps Hydrologic unit runoff and runoff conditionmaps

from 1901 to 2015
Rating curve Streamflow rating curve
Runoff hydrograph Runoff time-series plots
Streamflow conditions map Streamflow conditions
Streamflow map animation Real-time streamflow and flood-and-highflow maps
Raster hygrograph Pixel-based plots for visualizing and identifying

variations and changes in a streamflow data set
Seven-day low flow conditions Seven-day low flow of an area for a specific period
Streamgage statistics Statistics and a durationgraph for a streamgage
Streamflow measurements Streamflow measurements for a period and in an

area
Flood-tracking chart Flood stages with recorded peak stages of previous

floods
Streamgage finder Streamgages by region and river name
Flood and high flow Table listing flood, high flow, and peak rank

summary
Streamflow map viewer Dynamic maps
Cumulative area-based runoff hydrograph Graphical presentationof cumulative daily

area-based runoff, plotted over the cumulative
long-term statistics (median and interquartilerange)
of runoff

Durationhydrograph Time-history of streamflow
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4.7.6 Water Evaluation and Planning System (WEAP)

The WEAP is used for integrated planning assessments of different components
of the water system and supports water planning, simulations, and water resources
management tool [106]. Its robust integrated engines consider water quality, supply
and demand, and other ecological parameters in single watershed, agriculture,
urban, trans-boundary river basin, and environmental systems. The important
features of the system include simulation capability to many different types of
components such as precipitation, runoff, rainfall, reservoirs, and groundwater
recharge. At the policy level, it supports demand analysis, rights and priorities,
conservation, vulnerability assessment, hydro-power generation, and water quality.
It can also provide the cost/benefit analysis of the simulated systems with various
stakeholders engagement. The componentof the WEAP is

• Water Balance. A database for water demand and supply data.
• Simulation Based. Supports simulations of various hydrologic and policy cases.
• Policy Scenarios. Policies to develop and manage water systems.
• User-Friendly GUI. A GUI to supportmultiple model outputformats (e.g., tables,

maps, and charts).
• Model Integration. Supports import and export from other models.

4.7.7 CalWater

The CalWater [27] deals with the empirical measurements of two vital factors:
atmosphericrivers (ARs) and aerosols [12, 29, 81, 98, 108], in eastern Pacific coastal
region. The evaluation of these two parameters is importantto understandvariations
in extreme precipitation events and water supply. The atmospheric rivers (ARs)
[27, 49, 64, 65, 73, 77, 86–89, 102, 102, 104, 121, 124, 125] deliver significant water
vapor related to major storms. Similarly, the aerosols (local and remote) impact the
precipitation events in these coastal areas.

4.7.8 River and Reservoir Modeling Tool (RiverWare)

The RiverWare is an advanced tool that is used for water resources modeling (e.g.,
river basin and reaches, reservoir, hydrologic processes, distribution canals, hydro-
power production and uses, water quality, and diversions) [1]. It is also a decision
making tool with real-time operations support and policy based simulations and
post-processing. Anotherimportantfeature of the RiverWare is the problem solution
and optimization engine under temporal and spatial constraints and scenarios. For
this purpose, the RiverSMART is used that is software framework to create, execute,
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and archive the big RiverWare study plans based hydrologic ensemble, needs, and
strategic directions of water supply and use. The policy analysis, demand input, and
study manager are other importanttools of RiverWare.

4.7.9 Digital Coast

The digital coast provides data and tools for coastal services including coastal
water quality, land cover, shoreline, and surface water. It helps coastal management
community to address climate and water related issues [76].

4.7.10 European CoastColour

The purpose of CoastColour is to provide measurements and data that is relevant
to coastal zone management at 300 m spatial resolution along with processing
algorithms for different coastal water types [26]. It is useful to obtain data about sea
level, carbon cycle, and water mass distribution. It can also be utilized to develop
and validate the various coastal water algorithms (water leaving reflectance). The
CoastColour data set is available on-line.

4.7.11 Water Harvesting Assessment Toolbox

The water harvesting assessment toolbox is used in understandingand development
of the water harvesting processes to meet the water related challenges [118]. It is
also decision support tool to get better insights in water harvesting and supports
various water harvesting techniques and system implementation.

4.7.12 National Groundwater Monitoring Network

The National Ground-Water Monitoring Network (NGWMN) is a network of
groundwater monitoringwells across the US [74]. It is one of the critical networks
to meet the needs of water research community about groundwater data, which
is otherwise unavailable data. It supports various databases of past and current
information of about water quality, water level, physical characteristics of rocks
(lithology), and well composition. It is used to assess the water level declines.

A list of sustainable water IoT databases and systems with their sensing
parameters is given in Table 4.3.
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Table 4.3 Sustainable water IoT databases and systems

Sensing System Description
Meteorological data Global historical

climatology network-daily
(GHCN-D)

Meteorological data from
satellites and radars

Streamflow NOAA national water
informationsystem (NWIS)

Streamflow data for water
and planning purpose

Water temperatureand quality NorWest Historical data about water
temperatureand quality

Chemical, physical, and
biological properties

National stream internet Geo-statistical data

Meteorological data Quality controlled local
climatological data
(QCLCD)

Global Meteorological data
of climate variables

Precipitation Precipitation frequency data
server (PFDS)

Integrated water modeling National water model Hydrologic forecasting
system of atmospheric
conditions and their
connection to river and
streamflow

Soil moisture Soil climate analysis
network (SCAN)

Soil moisture monitoring

Snow Snow survey and water
supply forecasting

Real-time air temperature,
precipitation, and
snow-pack information

Groundwater National GW monitoring
network

Groundwater for climate
forecasting

Wetlands National wetland inventory
2.0

Geo-spatial data and
wetland maps and
properties

Water use NWISWeb Water use data
Atmospheric FLUXNET Exchange of CO2, water

vapor, and energy
Water and humanhealth The waterborne disease and

outbreak surveillance system
waterborne disease and
outbreaks

Water and aquatic animal
health

National wildlife health
survey database

Aquatic animal health in the
wild

Daily forecast and models Network for environment
and weather applications

Interactive forecast models

4.7.13 Water Toolbox

The water toolbox is a data portal for integrated water resources management.
It provides state-of-the-art tools, models, best management practices, legislative
resources, policy guidelines, and comprehensive data sets to the internationalwater
community for education and research purpose.
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Other water related tools to support real-time decision making in sustainable
water IoT are discussed below [112]:

• SSMI Water Vapor Imagery. Latest integrated water vapor, cloud liquid water,
and rain rate.

• GOES West Satellite Imagery. Infrared, visible, and water vapor satellite images.
• AR Precipitation Observations. Gridded precipitation products at several

timescales.
• Atmospheric River Observatories. Analyses of water vapor flux, radar and

disdrometer, and snow level.
• Integrated Water Vapor. An experimental tool using NCEP’s GFS and NAM

systems
• Probabilistic Landfall Tool. The magnitude, probability, and timing of West

Coast AR conditions.
• Integrated Water Vapor Flux. An experimental tool using NCEP Global Forecast

System.
• PrecipitationForecasts. The quantitative precipitationforecasts from NCEP/WPC

& GFS.

4.8 Sustainable Water Indices

The major indices are given below:

• The water footprint.The water footprint is an index of the volumes of freshwater
appropriated/consumed/pollutedby the humanity. Its measurement is presented
by using the matrix format at spatio-temporal scale. The water footprint com-
bined with other economic, social, and environmental data is a good indicator of
water sustainability including SGD goal assessment.

• The U.S. Climate Extremes Index is a US index of extreme conditions. The long-
term values of this index indicate the tendency for extremes climate.

• Watershed Analysis Risk Management Framework (WARMF). The Watershed
Analysis Risk Management Framework (WARMF) is a general tool to model
and analyze the watershed and can be used with different watersheds. It is utilized
for short- and long-term prediction process, management of watersheds, and in
calculation of total maximum diurnal load.
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