81 research outputs found

    The effect of music-induced emotion on visual-spatial learning in people with Parkinson's disease: A pilot study

    Get PDF
    Introduction: Emotional states have been shown to influence cognitive processes including visual-spatial learning. Parkinson's Disease (PD), besides manifesting with the cardinal motor symptoms, presents cognitive and affective disturbances. Here we aimed at investigating whether manipulation of the emotional state by means of music was able to influence the performance of a visual-spatial learning task in a group of PD participants. Methods: Ten PD patients and 11 healthy elderly (ELD) were asked to perform a visual-spatial learning task while listening two musical pieces evoking a neutral emotion or fear. Targets were presented on a screen in a preset order over four blocks and subjects were asked to learn the sequence order by attending to the display. At the end of each block, participants were asked to verbally recall the sequence and a score was assigned (Verbal Score, VS). Results: Analysis of variance-type statistic test on the VS disclosed a significant effect of Music and sequence Blocks (p = 0.01 and p < 0.001, respectively) and a significant interaction between Group and sequence Blocks. Sequence learning occurred across the training period in both groups, but PD patients were slower than ELD and at the end of the training period learning performance was worse in PD with respect to ELD. In PD patients, like in ELD, fear-inducing music has a detrimental effect on visual-spatial learning performances, which are slower and decreased. Conclusion: These findings confirm an impairment in visual-spatial learning in PD and indicates that the emotional state influences this learning ability similarly to healthy controls

    Is a wearable sensor-based characterisation of gait robust enough to overcome differences between measurement protocols? A multi-centric pragmatic study in patients with multiple sclerosis

    Get PDF
    Inertial measurement units (IMUs) allow accurate quantification of gait impairment of people with multiple sclerosis (pwMS). Nonetheless, it is not clear how IMU-based metrics might be influenced by pragmatic aspects associated with clinical translation of this approach, such as data collection settings and gait protocols. In this study, we hypothesised that these aspects do not significantly alter those characteristics of gait that are more related to quality and energetic efficiency and are quantifiable via acceleration related metrics, such as intensity, smoothness, stability, symmetry, and regularity. To test this hypothesis, we compared 33 IMU-based metrics extracted from data, retrospectively collected by two independent centres on two matched cohorts of pwMS. As a worst-case scenario, a walking test was performed in the two centres at a different speed along corridors of different lengths, using different IMU systems, which were also positioned differently. The results showed that the majority of the temporal metrics (9 out of 12) exhibited significant between-centre differences. Conversely, the between-centre differences in the gait quality metrics were small and comparable to those associated with a test-retest analysis under equivalent conditions. Therefore, the gait quality metrics are promising candidates for reliable multi-centric studies aiming at assessing rehabilitation interventions within a routine clinical context

    In silico analysis of gene expression in V3a and the superior occipital gyrus. Relevance for migraine

    Get PDF
    Introduction: Visual manifestations are the most prominent non-painful features of migraine. During the last decades, visual area V3a has gathered attention of headache scientists because of its apparent implication on aura initiation, photophobia and cortical hyper-responsiveness related to visual motion perception. In this hypothesis-generating study, we performed an in silico analysis of gene expression in left V3a and the cerebral gyrus that harbours it (left superior occipital gyrus (lSOG)) searching for transcriptomic patterns that could be linked with migraineā€™s pathophysiology. Materials and methods: Neurotransmitter receptor gene expression levels in left V3a were extracted from validated brain mRNA expression models using a probabilistic volumetric mask of this region. The primary visual cortex and other sensory cortices (auditory, olfactory and somatosensory) were used as comparators. Genome-wide transcriptomic differences between the gyrus harbouring left V3a (lSOG) and the rest of the cerebral cortex were assessed using the Allen Brain Institute Human RNA micro array atlas/database. Results: Adrenergic receptor Ī²1, dopaminergic receptor D3 and serotoninergic receptors 1B, 1F and 2A, which have been previously implicated in migraineā€™s pathophysiology and/or treatment, showed significantly higher expression levels on left V3a. Transcriptomic differences between the lSOG harbouring V3a and the rest of the cortex comprise genes whose products are involved in neuronal excitability (SLC17A6, KCNS1, KCNG1 and GABRQ), activation of multiple signal transduction pathways (MET) and cell metabolism (SPHKAP via its interaction with cAMP-dependent protein kinase). Conclusions: Focal gene expression analysis of V3a suggests some clues about its implication in migraine. Further studies are warranted

    SGLT2-inhibitors effects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis

    Get PDF
    Background: Sodium-glucose transporter 2 inhibitors (SGLT2-I) could modulate atherosclerotic plaque progression, via down-regulation of inflammatory burden, and lead to reduction of major adverse cardiovascular events (MACEs) in type 2 diabetes mellitus (T2DM) patients with ischemic heart disease (IHD). T2DM patients with multivessel non-obstructive coronary stenosis (Mv-NOCS) have over-inflammation and over-lipids' plaque accumulation. This could reduce fibrous cap thickness (FCT), favoring plaque rupture and MACEs. Despite this, there is not conclusive data about the effects of SGLT2-I on atherosclerotic plaque phenotype and MACEs in Mv-NOCS patients with T2DM. Thus, in the current study, we evaluated SGLT2-I effects on Mv-NOCS patients with T2DM in terms of FCT increase, reduction of systemic and coronary plaque inflammation, and MACEs at 1 year of follow-up. Methods: In a multi-center study, we evaluated 369 T2DM patients with Mv-NOCS divided in 258 (69.9%) patients that did not receive the SGLT2-I therapy (Non-SGLT2-I users), and 111 (30.1%) patients that were treated with SGLT2-I therapy (SGLT2-I users) after percutaneous coronary intervention (PCI) and optical coherence tomography (OCT) evaluation. As the primary study endpoint, we evaluated the effects of SGLT2-I on FCT changes at 1 year of follow-up. As secondary endpoints, we evaluated at baseline and at 12 months follow-up the inflammatory systemic and plaque burden and rate of MACEs, and predictors of MACE through multivariable analysis. Results: At 6 and 12 months of follow-up, SGLT2-I users vs. Non-SGLT2-I users showed lower body mass index (BMI), glycemia, glycated hemoglobin, B-type natriuretic peptide, and inflammatory cells/molecules values (pā€‰<ā€‰0.05). SGLT2-I users vs. Non-SGLT2-I users, as evaluated by OCT, evidenced the highest values of minimum FCT, and lowest values of lipid arc degree and macrophage grade (pā€‰<ā€‰0.05). At the follow-up end, SGLT2-I users vs. Non-SGLT2-I users had a lower rate of MACEs [n 12 (10.8%) vs. n 57 (22.1%); pā€‰<ā€‰0.05]. Finally, Hb1Ac values (1.930, [CI 95%: 1.149-2.176]), macrophage grade (1.188, [CI 95%: 1.073-1.315]), and SGLT2-I therapy (0.342, [CI 95%: 0.180-0.651]) were independent predictors of MACEs at 1 year of follow-up. Conclusions: SGLT2-I therapy may reduce about 65% the risk to have MACEs at 1 year of follow-up, via ameliorative effects on glucose homeostasis, and by the reduction of systemic inflammatory burden, and local effects on the atherosclerotic plaque inflammation, lipids' deposit, and FCT in Mv-NOCS patients with T2DM

    The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few research in multiple sclerosis (MS) has focused on physical rehabilitation of upper limb dysfunction, though the latter strongly influences independent performance of activities of daily living. Upper limb rehabilitation technology could hold promise for complementing traditional MS therapy. Consequently, this pilot study aimed to examine the feasibility of an 8-week mechanical-assisted training program for improving upper limb muscle strength and functional capacity in MS patients with evident paresis.</p> <p>Methods</p> <p>A case series was applied, with provision of a training program (3Ɨ/week, 30 minutes/session), supplementary on the customary maintaining care, by employing a gravity-supporting exoskeleton apparatus (Armeo Spring). Ten high-level disability MS patients (Expanded Disability Status Scale 7.0-8.5) actively performed task-oriented movements in a virtual real-life-like learning environment with the affected upper limb. Tests were administered before and after training, and at 2-month follow-up. Muscle strength was determined through the Motricity Index and Jamar hand-held dynamometer. Functional capacity was assessed using the TEMPA, Action Research Arm Test (ARAT) and 9-Hole Peg Test (9HPT).</p> <p>Results</p> <p>Muscle strength did not change significantly. Significant gains were particularly found in functional capacity tests. After training completion, TEMPA scores improved (<it>p </it>= 0.02), while a trend towards significance was found for the 9HPT (<it>p </it>= 0.05). At follow-up, the TEMPA as well as ARAT showed greater improvement relative to baseline than after the 8-week intervention period (<it>p </it>= 0.01, <it>p </it>= 0.02 respectively).</p> <p>Conclusions</p> <p>The results of present pilot study suggest that upper limb functionality of high-level disability MS patients can be positively influenced by means of a technology-enhanced physical rehabilitation program.</p

    Adaptive robot training for the treatment of incoordination in Multiple Sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebellar symptoms are extremely disabling and are common in Multiple Sclerosis (MS) subjects. In this feasibility study, we developed and tested a robot therapy protocol, aimed at the rehabilitation of incoordination in MS subjects.</p> <p>Methods</p> <p>Eight subjects with clinically defined MS performed planar reaching movements while grasping the handle of a robotic manipulandum, which generated forces that either reduced (error-reducing, ER) or enhanced (error-enhancing, EE) the curvature of their movements, assessed at the beginning of each session. The protocol was designed to adapt to the individual subjects' impairments, as well as to improvements between sessions (if any). Each subject went through a total of eight training sessions. To compare the effect of the two variants of the training protocol (ER and EE), we used a cross-over design consisting of two blocks of sessions (four ER and four EE; 2 sessions/week), separated by a 2-weeks rest period. The order of application of ER and EE exercises was randomized across subjects. The primary outcome measure was the modification of the Nine Hole Peg Test (NHPT) score. Other clinical scales and movement kinematics were taken as secondary outcomes.</p> <p>Results</p> <p>Most subjects revealed a preserved ability to adapt to the robot-generated forces. No significant differences were observed in EE and ER training. However over sessions, subjects exhibited an average 24% decrease in their NHPT score. The other clinical scales showed small improvements for at least some of the subjects. After training, movements became smoother, and their curvature decreased significantly over sessions.</p> <p>Conclusions</p> <p>The results point to an improved coordination over sessions and suggest a potential benefit of a short-term, customized, and adaptive robot therapy for MS subjects.</p

    Biomarker candidates of neurodegeneration in Parkinsonā€™s disease for the evaluation of disease-modifying therapeutics

    Get PDF
    Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinsonā€™s disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of Ī±-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies
    • ā€¦
    corecore