294 research outputs found

    Automatically Generating and Solving Eternity II Style Puzzles

    Get PDF

    On Matrices, Automata, and Double Counting

    Get PDF
    Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variables M, with the same constraint defined by a finite-state automaton A on each row of M and a global cardinality constraint gcc on each column of M. We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the gcc constraints from the automaton A. The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We evaluate the impact of our methods on a large set of nurse rostering problem instances

    On the speed of constraint propagation and the time complexity of arc consistency testing

    Full text link
    Establishing arc consistency on two relational structures is one of the most popular heuristics for the constraint satisfaction problem. We aim at determining the time complexity of arc consistency testing. The input structures GG and HH can be supposed to be connected colored graphs, as the general problem reduces to this particular case. We first observe the upper bound O(e(G)v(H)+v(G)e(H))O(e(G)v(H)+v(G)e(H)), which implies the bound O(e(G)e(H))O(e(G)e(H)) in terms of the number of edges and the bound O((v(G)+v(H))3)O((v(G)+v(H))^3) in terms of the number of vertices. We then show that both bounds are tight up to a constant factor as long as an arc consistency algorithm is based on constraint propagation (like any algorithm currently known). Our argument for the lower bounds is based on examples of slow constraint propagation. We measure the speed of constraint propagation observed on a pair G,HG,H by the size of a proof, in a natural combinatorial proof system, that Spoiler wins the existential 2-pebble game on G,HG,H. The proof size is bounded from below by the game length D(G,H)D(G,H), and a crucial ingredient of our analysis is the existence of G,HG,H with D(G,H)=Ω(v(G)v(H))D(G,H)=\Omega(v(G)v(H)). We find one such example among old benchmark instances for the arc consistency problem and also suggest a new, different construction.Comment: 19 pages, 5 figure

    Bibliographie

    Get PDF

    Domain k-Wise Consistency Made as Simple as Generalized Arc Consistency

    Get PDF
    Abstract. In Constraint Programming (CP), Generalized Arc Consistency (GAC) is the central property used for making inferences when solving Constraint Satisfaction Problems (CSPs). Developing simple and practical filtering algorithms based on consistencies stronger than GAC is a challenge for the CP community. In this paper, we propose to combine k-Wise Consistency (kWC) with GAC, where kWC states that every tuple in a constraint can be extended to every set of k − 1 additional constraints. Our contribution is as follows. First, we derive a domain-filtering consistency, called Domain k-Wise Consistency (DkWC), from the combination of kWC and GAC. Roughly speaking, this property corresponds to the pruning of values of GAC, when enforced on a CSP previously made kWC. Second, we propose a procedure to enforce DkWC, relying on an encoding of kWC to generate a modified CSP called k-interleaved CSP. Formally, we prove that enforcing GAC on the k-interleaved CSP corresponds to enforcing DkWC on the initial CSP. Consequently, we show that the strong DkWC can be enforced very easily in constraint solvers since the k-interleaved CSP is rather immediate to generate and only existing GAC propagators are required: in a nutshell, DkWC is made as simple and practical as GAC. Our experimental results show the benefits of our approach on a variety of benchmarks.

    Constraint satisfaction parameterized by solution size

    Full text link
    In the constraint satisfaction problem (CSP) corresponding to a constraint language (i.e., a set of relations) Γ\Gamma, the goal is to find an assignment of values to variables so that a given set of constraints specified by relations from Γ\Gamma is satisfied. The complexity of this problem has received substantial amount of attention in the past decade. In this paper we study the fixed-parameter tractability of constraint satisfaction problems parameterized by the size of the solution in the following sense: one of the possible values, say 0, is "free," and the number of variables allowed to take other, "expensive," values is restricted. A size constraint requires that exactly kk variables take nonzero values. We also study a more refined version of this restriction: a global cardinality constraint prescribes how many variables have to be assigned each particular value. We study the parameterized complexity of these types of CSPs where the parameter is the required number kk of nonzero variables. As special cases, we can obtain natural and well-studied parameterized problems such as Independent Set, Vertex Cover, d-Hitting Set, Biclique, etc. In the case of constraint languages closed under substitution of constants, we give a complete characterization of the fixed-parameter tractable cases of CSPs with size constraints, and we show that all the remaining problems are W[1]-hard. For CSPs with cardinality constraints, we obtain a similar classification, but for some of the problems we are only able to show that they are Biclique-hard. The exact parameterized complexity of the Biclique problem is a notorious open problem, although it is believed to be W[1]-hard.Comment: To appear in SICOMP. Conference version in ICALP 201

    Solving the Sports League Scheduling Problem with Tabu Search

    Get PDF
    In this paper we present a tabu approach for a version of the Sports League Scheduling Problem. The approach adopted is based on a formulation of the problem as a Constraint Satisfaction Problem (CSP). Tests were carried out on problem instances of up to 40 teams representing 780 integer variables with 780 values per variable. Experimental results show that this approach outperforms some existing methods and is one of the most promising methods for solving problems of this type
    • …
    corecore