
Bond University
Research Repository

Automatically Generating and Solving Eternity II Style Puzzles

Harris, Geoffrey; Vanstone, Bruce J; Gepp, Adrian

Published in:
Recent Trends and Future Technology in Applied Intelligence - 31st International Conference on Industrial
Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2018, Proceedings

DOI:
10.1007/978-3-319-92058-0_60

Published: 30/05/2018

Document Version:
Peer reviewed version

Link to publication in Bond University research repository.

Recommended citation(APA):
Harris, G., Vanstone, B. J., & Gepp, A. (2018). Automatically Generating and Solving Eternity II Style Puzzles. In
M. Mouhoub, S. Sadaoui, O. Ait Mahomed, & M. Ali (Eds.), Recent Trends and Future Technology in Applied
Intelligence - 31st International Conference on Industrial Engineering and Other Applications of Applied
Intelligent Systems, IEA/AIE 2018, Proceedings (pp. 626-632). (Lecture Notes in Computer Science (LNCS);
Vol. 10868). Springer. https://doi.org/10.1007/978-3-319-92058-0_60

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository
coordinator.

Download date: 09 Oct 2020

https://doi.org/10.1007/978-3-319-92058-0_60
https://research.bond.edu.au/en/publications/89a36c3c-7e8b-479a-88cb-0daad9495f83
https://doi.org/10.1007/978-3-319-92058-0_60


Automatically Generating and Solving Eternity
II Style Puzzles

Geoff Harris1[0000−0003−4284−8619], Bruce James Vanstone1[0000−0002−3977−2468],
and Adrian Gepp1[0000−0003−1666−5501]

Bond Business School, Bond University, Gold Coast, Australia.
gharris@bond.edu.au, bvanston@bond.edu.au, adgepp@bond.edu.au

Abstract. The Eternity II puzzle is an NP-complete problem. Prior
researchers have generated data sets that are similar to the Eternity II
problem. These data sets can be created in linear time, but this comes
at the cost of easing the problem by introducing exploitable statistical
features. The first contribution of this paper is a new method to generate
data sets that are truly of Eternity II style. The second contribution is an
Eternity II specific implementation of a constraint-satisfaction-problem
style algorithm. Unlike most other published algorithms, this one has
no form of look-ahead, filtering, forward checking, back jumping or k-
consistency checks. Instead, it uses knowledge about the structure of the
puzzle and the uniform distribution of edge colours. This approach is up
to three orders of magnitude faster than previously published attempts.

Keywords: Eternity II, edge matching puzzle, constraint satisfaction
problem, NP-complete

1 Introduction

Edge Matching Puzzles (EMPs) belong to the NP-complete (NP-C) problem set
for their worst-case complexity [1] and, depending on the objective function cho-
sen, optimization of those solutions may result in an NP-hard problem. With the
release of two high prize money puzzles, labelled Eternity and Eternity II, EMPs
have attracted the attention of academics from a range of disciplines. The first
Eternity puzzle was solved by exploiting statistical features (non-uniformities)
in the distribution of piece colours. This weakness was corrected in Eternity II,
which remains an open problem.

The contribution of this paper is two-fold. First, we develop an efficient al-
gorithm to generate data sets that are truly of Eternity II style puzzle. Second,
we present a näıve algorithm for solving such puzzles, which has no look-ahead,
no forward checking, no back jumping and no k-consistency checks. Empirical
tests reveal that our algorithm outperforms all previously published results.

2 Literature Review

Ansótegui et al. [2] provided a theoretical framework of the generalized EMP,
established some terminology with mathematical definitions and provided both



2

elementary and advanced SAT and CSP solution algorithms. However, to ensure
runtimes were feasible the authors only considered puzzles of edge size n ∈
{6, 7, 8}. Due to the combinatorial explosion with increasing n, they could not
attempt the actual commercial puzzle of size n = 16.

The first published result of the commercial n=16 problem used a hybrid
approach of Tabu search and local neighbourhood techniques to claim a score
of 458/480 [3]. (The standard score is calculated from the number of edges
that match.) However, the researchers noted that with their implementation
the largest puzzle that they could solve was n = 8.

In a more practical CSP approach to the Eternity II puzzle, researchers have
considered the constrained enumeration to all solutions of the problem [4]. Their
reinforced filtering of the data structures enabled them to efficiently solve some
EMP instances of size n = 10. However, these EMP puzzles were substantially
easier to solve than the Eternity II style n = 10 puzzles.

An evolutionary algorithm approach only achieved 396/480 on the n = 16
commercial Eternity II puzzle [5]. Despite the poor score, the significance of this
work is that three separate evolutionary algorithms were evaluated.

In another attempt of the general problem, a Tabu search algorithm was
used as a two-phase divide and conquer technique [6]. They achieved a best
score of 418/480 on the n = 16 puzzle at the 2010 International Conference
on Metaheuristics and Nature Inspired Computing (META’10). Using a concep-
tually similar guided hyper-heuristic, the winners of the META’10 achieved a
substantially higher best score of 461/480. However, both were unable to solve
any puzzle of size n > 8.

The above quoted results need to be viewed in light of the academically
unpublished, publicly available results of Louis Verhaard [7] who obtained a
score of 467/480 for the commercial Eternity II puzzle.

3 Generation of Eternity II Style Puzzle Datasets

The frequency distribution of edge colours of the commercial Eternity II puzzle
is shown in the left panel of Fig. 1. The distributions of inner and frame colours
are uniform (to maximize entropy) In addition, (i) tiles are not permitted to be
rotated and (ii) globally symmetric patterns of tiles are not allowed. These condi-
tions ensure unique (non-degenerate) solutions that are a necessary requirement
for a puzzle to be classed as an Eternity II style puzzle.

In the puzzle generation algorithm described by Ansótegui et al. [2], a ran-
dom number generator is used to create the colour distribution on the tile edges.
Consequently, their results are for a combination of Eternity II style puzzles and
other EMP problems, which they refer to as GEMP (General Edge Matching
Puzzles). In stark contrast to the left panel of Figure 1, consider the colour
distribution shown in the right panel for one of the easier n = 10 puzzles [4],
which has many statistical weaknesses that can be exploited by algorithms with
domain trimming heuristics. That is, it is reasonable to expect the use of look-
ahead, forward checking, back jumping and k-consistency checks should result



3

1 5 6 22 1 12 13 25

Fig. 1. The distribution of frame and inner-edge colours in the commercial Eternity
II puzzle (left) contrasted with a typical 10 × 10 EMP [4] (right). For Eternity II, the
frame colours are numbered 1 to 5 and the inner colours are numbered 6 to 22. For
the typical EMP, the frame colours are numbered 1 to 12 and the inner colours are
numbered 13 to 25.

in exploitation by those algorithms to dramatically reduce the size of the search
space. Unlike the methods above that can result in EMP problems that do not
meet the requirements of an Eternity II style puzzle, we propose an algorithm
that always generates an n×n Eternity II style puzzle with N = n2 tiles consist-
ing of i unique frame colours and j unique inner colours where f(i) ≤ f(j)÷ 2:

Generate a list of 4(n-1) colors from a uniform range of [1..i]

colors

Generate a list of 2(n-1)(n-2) colors from a uniform range of

[1..j] colors

Generate N blank tiles on an n by n grid

Repeat

Randomly assign the frame colors to adjacent edges of the

frame pieces

Randomly assign the inner colors to adjacent edges of the

inner pieces

Validate tiles for rotation and symmetry

Until All N tiles are validated.

Any puzzle generated by this algorithm will fulfil the necessary and sufficient
conditions to be classed an Eternity II style hard EMP.

4 Our Zero Look-ahead Algorithm (ZLA)

A brute force algorithm that does not employ look-ahead simply attempts to
instantiate the next variable available. However, given the assumption P 6= NP



4

[8], we need a method of variable instantiation which will reasonably trim the
branching factor of the implemented search tree that incorporates the specifics
of Eternity II style puzzles. The smallest domains from the root node will be
those associated with the corners as there are only four elements possible for
each domain. Thus, our ZLA begins by instantiating a single corner piece, which
is arbitrarily chosen as the top left corner of the puzzle. It is self-evident that
all solutions (after removing those with rotational redundancy) to the entire
puzzle necessarily have the same corner piece in that position. Ipso facto, our
first domain can be created as a single corner piece.

For reasonable sized puzzles, as a potential constituent if this were a look-
ahead approach, the next smallest domain will be a tie between the other three
corner variables. However, our ZLA works on the application of instantiating
the most logically constrained of the neighbouring variables. The next variable
to instantiate is thus one of the two frame positions adjacent to the top left
corner. As the Eternity II style puzzles have uniform colour distributions, there
will be a tie between these two variables. Thus, without any computational loss,
we can choose to instantiate the variable to the right of the top left corner. Once
that variable has been instantiated, we again utilise knowledge of the puzzles
properties to realize that the shortest path going forward is to work down the
rows, using a zigzag pattern across and back pairs of rows.

The elements of each domain are accessed via a global indexing structure
which connects domains to rotations of pieces by the top edge of each rotated
piece with one of the sides. There are no look-ahead, forward check, back jumping
or k-consistency checks performed by the algorithm. Other than using an index
to ensure it only considers pieces that could be instantiated into a variable, the
only runtime check performed is whether that piece is already in use or not.

5 Results and Discussion

Our ZLA algorithm was implemented in Pascal using bit sets to speed up com-
parison operations. The source code (and all datasets used for the results) have
been uploaded to Bitbucket [9]. The implementation was tested against pub-
lished benchmarks [4] for correctness and efficacy. The results of running our
implementation on the full set of 48 benchmarks is shown in Table 1. Note that
we have adjusted our runtimes (by multiplying them by 3.31) to enable a more
objective comparison with the prior published results. Specifically, we sourced an
i7 laptop from 2014 and determined from a respected online site (CPUBoss) that
the difference in single threaded CPU speed of the Athlon used by Ansótegui et
al. [2] and the early i7 in the laptop was a factor of 3.31.

In 40 of the 48 benchmarks, the ZLA outperformed all other implementa-
tions. This is an interesting result as the benchmarks are for EMP puzzles that
have distinctly non-uniform colour distributions that should favour the other
implementations that use a various mix of forward checking, look-ahead, back
jumping and k-consistency checks. ZLA totally ignores any exploitable structure
to the colours or tiles. Nevertheless, overall as judged by the cumulative geomet-



5

Table 1. Comparison of runtimes (seconds) published by Ansótegui et al. [2] with our
ZLA implementation on the datasets provided by Bourreau and Benoist [4]. Boldface
indicates the fastest runtime on that particular puzzle.

Puzzle ID PLA-ONION Benoist MAC SAT(PD) ZLA

E 7 1.b6i6 30 50 1968 3040 17

E 7 2.b6i6 45 33 96 602 115

E 7 3.b6i6 184 179 10322 17713 4.3

E 7 4.b6i6 9 20 1517 250 42

E 8 1.b8i8 33 188 13036 4281 145

E 9 1.b9i9 4866 20000 20000 5937 1540

E 9 2.b9i9 337 2140 20000 3240 127

E 9 3.b11i12 16 5 277 28.5 0.06

E 9 4.b9i12 3 3 491 3.7 0.07

E 9 5.b10i11 51 160 549 174 0.5

E 9 6.b9i10 2657 931 20000 9854 404

E 9 7.b9i11 4 69 1251 57 0.1

E 9 8.b8i9 20000 15299 20000 6950 4136

E 9 9.b9i10 5193 16526 20000 6869 57

E 9 10.b10i10 16 119 8404 62 73

E 9 11.b9i11 35 21 2849 3 2

E 9 12.b10i10 15 70 7278 303 3

E 9 13.b10i10 27 14 7568 29 3

E 9 14.b9i10 916 1961 15231 3645 29

E 9 15.b10i10 592 2298 2436 569 14

E 9 16.b9i10 12 2710 15280 876 4

E 9 17.b9i10 392 2317 20000 11323 9

E 10 1.b11i11 7372 12106 20000 5904 14704

E 10 2.b11i11 7641 20000 20000 3257 6804

E 10 3.b11i11 8480 11399 20000 6012 721

E 10 4.b11i11 1849 4544 20000 6075 1486

E 10 5.b14i14 16 8 34 0.7 0.05

E 10 6.b11i12 2077 2552 20000 1098 88

E 10 7.b12i15 2 18 3 6.7 0.01

E 10 8.b13i14 13 34 88 14 0.08

E 10 9.b12i14 24 130 70 63.5 0.1

E 10 10.b12i12 444 196 20000 611 34

E 10 11.b13i13 14 54 321 65 0.1

E 10 12.b12i13 9 53 173 36 0.1

E 10 13.b12i12 67 2222 20000 260 106

E 10 14.b12i13 97 187 6553 253 0.5

E 10 15.b11i12 179 224 20000 688 25

E 10 16.b13i13 14 29 179 4.5 0.4

E 10 17.b13i13 0 18 684 6.6 0.6

E 10 18.b12i13 24 87 2647 2 0.4

E 10 19.b12i13 58 348 4886 3.5 1

E 10 20.b11i14 282 1573 9175 45.6 3

E 10 21.b12i13 60 261 5364 21 2

E 10 22.b12i13 1 38 3986 7 2

E 10 23.b12i12 233 1055 17019 223 6

E 10 24.b12i12 414 8913 20000 1094 18

E 10 25.b12i12 107 123 20000 202 8

E 10 26.b12i12 2000 9950 20000 3526 80

Geometric Mean 94.79 310.04 3419.49 234.26 7.76



6

ric mean (as suggested in [2]), the ZLA implementation clearly outperforms the
other implementations by a substantial margin.

A more meaningful comparison is with harder EMP puzzles, which is shown in
Table 2 using datasets provided by Ansótegui et al. [2]. In-line with the previous
research, each cell represents the median time, over 100 instances of these puzzles,
for a particular implementation. It is interesting to note that ZLA is the fastest
implementation across all puzzles. This is in spite of there still being a proportion
of harder puzzles that do not meet the conditions for being Eternity II style.
That is, some of the puzzles still have exploitable statistical features that should
favour the non-ZLA implementations.

Table 2. Comparison of runtimes (seconds) published by Ansótegui et al. [2] for their
GEMP problems with our ZLA algorithm for corresponding hard Eternity II style prob-
lems. Times for ZLA have been adjusted as specified above to allow direct comparison
with the earlier results. Boldface indicates the fastest runtime on that particular puzzle.

Solver Median Time (s)

Puzzle Size (n× n) 6 × 6 7 × 7 8 × 8

Colours inner:frame 6 : 2 6 : 4 7 : 2 7 : 3 7 : 4 8 : 2

PLA-DOM 15 520 18193 9464 581 8387

PLA-CHESS 0.5 5249 137 4181 6906 510

PLA-ONION 82 382 > 2 × 104 > 2 × 104 429 > 2 × 104

MAC+GAColor 0.94 328 96 646 348 208

MAC+GAColor+Ctadiff 0.73 377 94 727 395 516

SAT(P) 7.45 > 2 × 104 4418 > 2 × 104 7960 6465

SAT(PD) 0.55 777 125 1785 682 359

MACb dom/deg 19 2415 > 2 × 104 > 2 × 104 3307 > 2 × 104

Minion 125 3463 > 2 × 104 > 2 × 104 4675 > 2 × 104

Benoist 133 681 > 2 × 104 8535 124 > 2 × 104

ZLA-E II style puzzles 0.026 0.017 1.152 12.111 0.801 88.069

6 Conclusion and Future Work

The first contribution of this paper is determining the criteria required for an
Edge Matching Puzzle (EMP) to be of Eternity II style, and providing an al-
gorithm to generate puzzles guaranteed to meet these criteria. This provides a
valuable way to test algorithms to solve hard Eternity II style puzzles and is an
improvement over methods in the existing literature that generate datasets that
sometimes do not meet the Eternity II style criteria.

The second main finding from this work is that for the range of Eternity II
style puzzles examined, a ZLA implementation was significantly faster (up to



7

many orders of magnitude) than the CSP or SAT implementations published
to date. This is an interesting result that reinforces the assertion in prior liter-
ature that a good variable ordering heuristic will outperform computationally
expensive domain reduction heuristics and back jumping [10]. That is, the com-
putational expense of invoking those heuristics will almost always slow down the
search to result in slow implementation runtimes relative to a well-constructed
(instance-specific) variable ordering heuristic.

An unexpected result was the complete dominance of the ZLA implementa-
tion on the relatively easy EMP puzzles. It was anticipated here that any CSP
or SAT implmentation would be able to exploit the statistical features in easy
puzzle instances and thus outperform the ZLA implementation.

There are future research opportunities in testing which domain minimiza-
tion heuristics, when added to the ZLA implementation, result in better runtimes
than the raw ZLA implementation presented in this paper. The knowledge gained
in the comparison of the trade-off between computational overhead against the
search space size reduction should be of great value to the CSP and SAT com-
munity.

References

1. Demaine, E.D., Demaine, M.L.: Jigsaw puzzles, edge matching, and polyomino
packing: Connections and complexity. Graphs and Combinatorics 23 (2007) 195–
208

2. Ansótegui, C., Béjar, R., Fernández, C., Mateu, C.: On the hardness of solving
edge matching puzzles as SAT or CSP problems. Constraints (2013) 1–31

3. Schaus, P., Deville, Y.: Hybridization of CP and VLNS for eternity II. Journées
Francophones de Programmation par Contraintes (JFPC’08) (2008)

4. Bourreau, E., Benoist, T.: Fast global filtering for Eternity II. Constraint Pro-
gramming Letters (CPL) 3 (2008) 036–049

5. Munoz, J., Gutierrez, G., Sanchis, A.: Evolutionary techniques in a constraint
satisfaction problem: Puzzle Eternity II. In: IEEE Congress on Evolutionary Com-
putation (CEC‘09), IEEE (2009) 2985–2991

6. Wang, W.S., Chiang, T.C.: Solving Eternity-II puzzles with a tabu search algo-
rithm. In: Proceedings of the 3rd International Conference on Metaheuristics and
Nature Inspired Computing (META). Volume 10. (2010)

7. Verhaard, L.: Details of eternity II solver eii.
http://www.shortestpath.se/eii/eii details.html (2009)

8. Aaronson, S.: Guest column: NP-complete problems and physical reality. ACM
Sigact News 36(1) (2005) 30–52

9. Harris, G., Vanstone, B., Gepp, A.: Code and data reposi-
tory: Automatically generating and solving eternity II style puzzles.
https://bvanston@bitbucket.org/bvanston/bag-canadian-conference-2018.git

(2018)
10. Bessiere, C., Régin, J.C.: MAC and combined heuristics: Two reasons to for-

sake FC (and CBJ?) on hard problems. In: Principles and Practice of Constraint
Programming-CP96, Springer (1996) 61–75


