35 research outputs found

    Variability in dengue titer estimates from plaque reduction neutralization tests poses a challenge to epidemiological studies and vaccine development.

    Get PDF
    BACKGROUND: Accurate determination of neutralization antibody titers supports epidemiological studies of dengue virus transmission and vaccine trials. Neutralization titers measured using the plaque reduction neutralization test (PRNT) are believed to provide a key measure of immunity to dengue viruses, however, the assay's variability is poorly understood, making it difficult to interpret the significance of any assay reading. In addition there is limited standardization of the neutralization evaluation point or statistical model used to estimate titers across laboratories, with little understanding of the optimum approach. METHODOLOGY/PRINCIPAL FINDINGS: We used repeated assays on the same two pools of serum using five different viruses (2,319 assays) to characterize the variability in the technique under identical experimental conditions. We also assessed the performance of multiple statistical models to interpolate continuous values of neutralization titer from discrete measurements from serial dilutions. We found that the variance in plaque reductions for individual dilutions was 0.016, equivalent to a 95% confidence interval of 0.45-0.95 for an observed plaque reduction of 0.7. We identified PRNT75 as the optimum evaluation point with a variance of 0.025 (log10 scale), indicating a titer reading of 1∶500 had 95% confidence intervals of 1∶240-1∶1000 (2.70±0.31 on a log10 scale). The choice of statistical model was not important for the calculation of relative titers, however, cloglog regression out-performed alternatives where absolute titers are of interest. Finally, we estimated that only 0.7% of assays would falsely detect a four-fold difference in titers between acute and convalescent sera where no true difference exists. CONCLUSIONS: Estimating and reporting assay uncertainty will aid the interpretation of individual titers. Laboratories should perform a small number of repeat assays to generate their own variability estimates. These could be used to calculate confidence intervals for all reported titers and allow benchmarking of assay performance

    A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus

    Get PDF
    Neutralizing antibodies are a significant component of the host's protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this “multiple-hit” perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope and the number of times this determinant is displayed on the surface of the virion. In this study, we investigated time-dependent changes in the fate of West Nile virus (WNV) decorated with antibody in solution. Experiments with the well-characterized neutralizing monoclonal antibody (MAb) E16 revealed a significant increase in neutralization activity over time that could not be explained by the kinetics of antibody binding, virion aggregation, or the action of complement. Additional kinetic experiments using the fusion-loop specific MAb E53, which has limited neutralizing activity because it recognizes a relatively inaccessible epitope on mature virions, identified a role of virus “breathing” in regulating neutralization activity. Remarkably, MAb E53 neutralized mature WNV in a time- and temperature-dependent manner. This phenomenon was confirmed in studies with a large panel of MAbs specific for epitopes in each domain of the WNV envelope protein, with sera from recipients of a live attenuated WNV vaccine, and in experiments with dengue virus. Given enough time, significant inhibition of infection was observed even for antibodies with very limited, or no neutralizing activity in standard neutralization assays. Together, our data suggests that the structural dynamics of flaviviruses impacts antibody-mediated neutralization via exposure of otherwise inaccessible epitopes, allowing for antibodies to dock on the virion with a stoichiometry sufficient for neutralization

    Identification and Biochemical Characterization of Small-Molecule Inhibitors of West Nile Virus Serine Protease by a High-Throughput Screen▿

    No full text
    West Nile virus and dengue virus are mosquito-borne flaviviruses that cause a large number of human infections each year. No vaccines or chemotherapeutics are currently available. These viruses encode a serine protease that is essential for polyprotein processing, a required step in the viral replication cycle. In this study, a high-throughput screening assay for the West Nile virus protease was employed to screen ∼32,000 small-molecule compounds for identification of inhibitors. Lead inhibitor compounds with three distinct core chemical structures (1 to 3) were identified. In a secondary screening of selected compounds, two compounds, belonging to the 8-hydroxyquinoline family (compounds A and B) and containing core structure 1, were identified as potent inhibitors of the West Nile virus protease, with Ki values of 3.2 ± 0.3 μM and 3.4 ± 0.6 μM, respectively. These compounds inhibited the dengue virus type 2 protease with Ki values of 28.6 ± 5.1 μM and 30.2 ± 8.6 μM, respectively, showing some selectivity in the inhibition of these viral proteases. However, the compounds show no inhibition of cellular serine proteases, trypsin, or factor Xa. Kinetic analysis and molecular docking of compound B onto the known crystal structure of the West Nile virus protease indicate that the inhibitor binds in the substrate-binding cleft. Furthermore, compound B was capable of inhibiting West Nile virus RNA replication in cultured Vero cells (50% effective concentration, 1.4 ± 0.4 μM; selectivity index, 100), presumably by inhibition of polyprotein processing

    Complement Protein C1q Inhibits Antibody-Dependent Enhancement of Flavivirus Infection in an IgG Subclass-Specific Manner

    Get PDF
    SummarySevere dengue virus infection can occur in humans with pre-existing antibodies against the virus. This observation led to the hypothesis that a subneutralizing antibody level in vivo can increase viral burden and cause more severe disease. Indeed, antibody-dependent enhancement of infection (ADE) in vitro has been described for multiple viruses, including the flaviviruses dengue virus and West Nile virus. Here, we demonstrate that the complement component C1q restricts ADE by anti-flavivirus IgG antibodies in an IgG subclass-specific manner in cell culture and in mice. IgG subclasses that avidly bind C1q induced minimal ADE in the presence of C1q. These findings add a layer of complexity for the analysis of humoral immunity and flavivirus infection

    Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5

    Get PDF
    Activation-induced cytidine deaminase (AID) initiates antibody gene diversification by creating U:G mismatches. However, AID is not specific for antibody genes; Off-target lesions can activate oncogenes or cause chromosome translocations. Despite its importance in these transactions little is known about how AID finds its targets. We performed an shRNA screen to identify factors required for class switch recombination (CSR) of antibody loci. We found that Spt5, a factor associated with stalled RNA polymerase II (Pol II) and single stranded DNA (ssDNA), is required for CSR. Spt5 interacts with AID, it facilitates association between AID and Pol II, and AID recruitment to its Ig and non-Ig targets. ChIP-seq experiments reveal that Spt5 colocalizes with AID and stalled Pol II. Further, Spt5 accumulation at sites of Pol II stalling is predictive of AID-induced mutation. We propose that AID is targeted to sites of Pol II stalling in part via its association with Spt5
    corecore