218 research outputs found

    Charged pion production in 4496^{96}_{44}Ru+4496^{96}_{44}Ru collisions at 400A and 1528A MeV

    Full text link
    We present transverse momentum and rapidity spectra of charged pions in central Ru + Ru collisions at 400AA and 1528AA MeV. The data exhibit enhanced production at low transverse momenta compared to the expectations from the thermal model that includes the decay of Δ(1232)\Delta(1232)-resonances and thermal pions. Modification of the Δ\Delta-spectral function and the Coulomb interaction are necessary to describe the detailed shape of the transverse momentum spectra. Within the framework of the thermal model, the freeze-out radii of pions are similar at both beam energies. The IQMD model reproduces the shapes of the transverse momentum and rapidity spectra of pions, but the predicted absolute yields are larger than in the measurements, especially at lower beam energy.Comment: 12 pages, 11 figure

    Elevated DNA Oxidation and DNA Repair Enzyme Expression in Brain White Matter in Major Depressive Disorder

    Get PDF
    Background: Pathology of white matter in brains of patients with major depressive disorder (MDD) is well-documented, but the cellular and molecular basis of this pathology are poorly understood. Methods:Levels of DNA oxidation and gene expression of DNA damage repair enzymes were measured in Brodmann area 10 (BA10) and/or amygdala (uncinate fasciculus) white matter tissue from brains of MDD (n=10) and psychiatrically normal control donors (n=13). DNA oxidation was also measured in BA10 white matter of schizophrenia donors (n=10) and in prefrontal cortical white matter from control rats (n=8) and rats with repeated stress-induced anhedonia (n=8). Results:DNA oxidation in BA10 white matter was robustly elevated in MDD as compared to control donors, with a smaller elevation occurring in schizophrenia donors. DNA oxidation levels in psychiatrically affected donors that died by suicide did not significantly differ from DNA oxidation levels in psychiatrically affected donors dying by other causes (non-suicide). Gene expression levels of two base excision repair enzymes, PARP1 and OGG1, were robustly elevated in oligodendrocytes laser captured from BA10 and amygdala white matter of MDD donors, with smaller but significant elevations of these gene expressions in astrocytes. In rats, repeated stress-induced anhedonia, as measured by a reduction in sucrose preference, was associated with increased DNA oxidation in white, but not gray, matter. Conclusions:Cellular residents of brain white matter demonstrate markers of oxidative damage in MDD. Medications that interfere with oxidative damage or pathways activated by oxidative damage have potential to improve treatment for MDD

    Isospin-tracing: A probe of non-equilibrium in central heavy-ion collisions

    Get PDF
    Four different combinations of 4496^{96}_{44}Ru and 4096^{96}_{40}Zr nuclei, both as projectile and target, were investigated at the same bombarding energy of 400AA MeV using a 4π4 \pi detector. The degree of isospin mixing between projectile and target nucleons is mapped across a large portion of the phase space using two different isospin-tracer observables, the number of measured protons and the t/3He{\rm t}/^{3}{\rm He} yield ratio. The experimental results show that the global equilibrium is not reached even in the most central collisions. Quantitative measures of stopping and mixing are extracted from the data. They are found to exhibit a quite strong sensitivity to the in-medium (n,n) cross section used in microscopic transport calculations.Comment: 4 pages RevTeX, 3 figures (ps files), submitted to Phys. Rev. Let

    Differential directed flow in Au+Au collisions

    Full text link
    We present experimental data on directed flow in semi-central Au+Au collisions at incident energies from 90 to 400 A MeV. For the first time for this energy domain, the data are presented in a transverse momentum differential way. We study the first order Fourier coefficient v1 for different particle species and establish a gradual change of its patterns as a function of incident energy and for different regions in rapidity.Comment: 5 pages, Latex, 5 eps figures, accepted for publication in Phys. Rev. C (Rapid Communications). Data files available at http://www-linux.gsi.de/~andronic/fopi/v1.htm

    Impaired Brain Dopamine and Serotonin Release and Uptake in Wistar Rats Following Treatment with Carbotplatin

    Get PDF
    Chemotherapy-induced cognitive impairment, known also as “chemobrain”, is a medical complication of cancer treatment that is characterized by a general decline in cognition affecting visual and verbal memory, attention, complex problem solving skills, and motor function. It is estimated that one-third of patients who undergo chemotherapy treatment will experience cognitive impairment. Alterations in the release and uptake of dopamine and serotonin, central nervous system neurotransmitters that play important roles in cognition, could potentially contribute to impaired intellectual performance in those impacted by chemobrain. To investigate how chemotherapy treatment affects these systems, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to measure dopamine and serotonin release and uptake in coronal brain slices containing the striatum and dorsal raphe nucleus, respectively. Measurements were taken from rats treated weekly with selected doses of carboplatin and from control rats treated with saline. Modeling the stimulated dopamine release plots revealed an impairment of dopamine release per stimulus pulse (80% of saline control at 5 mg/kg and 58% at 20 mg/kg) after 4 weeks of carboplatin treatment. Moreover, Vmax, the maximum uptake rate of dopamine, was also decreased (55% of saline control at 5 mg/kg and 57% at 20 mg/kg). Nevertheless, overall dopamine content, measured in striatal brain lysates by high performance liquid chromatography, and reserve pool dopamine, measured by FSCV after pharmacological manipulation, did not significantly change, suggesting that chemotherapy treatment selectively impairs the dopamine release and uptake processes. Similarly, serotonin release upon electrical stimulation was impaired (45% of saline control at 20 mg/kg). Measurements of spatial learning discrimination were taken throughout the treatment period and carboplatin was found to alter cognition. These studies support the need for additional neurochemical and behavioral analyses to identify the underlying mechanisms of chemotherapy-induced cognitive disorders

    Directed flow in Au+Au, Xe+CsI and Ni+Ni collisions and the nuclear equation of state

    Full text link
    We present new experimental data on directed flow in collisions of Au+Au, Xe+CsI and Ni+Ni at incident energies from 90 to 400A MeV. We study the centrality and system dependence of integral and differential directed flow for particles selected according to charge. All the features of the experimental data are compared with Isospin Quantum Molecular Dynamics (IQMD) model calculations in an attempt to extract information about the nuclear matter equation of state (EoS). We show that the combination of rapidity and transverse momentum analysis of directed flow allow to disentangle various parametrizations in the model. At 400A MeV, a soft EoS with momentum dependent interactions is best suited to explain the experimental data in Au+Au and Xe+CsI, but in case of Ni+Ni the model underpredicts flow for any EoS. At 90A MeV incident beam energy, none of the IQMD parametrizations studied here is able to consistently explain the experimental data.Comment: RevTeX, 20 pages, 30 eps figures, accepted for publication in Phys. Rev. C. Data files available at http://www.gsi.de/~fopiwww/pub

    Sideward flow of K+ mesons in Ru+Ru and Ni+Ni reactions near threshold

    Full text link
    Experimental data on K+ meson and proton sideward flow measured with the FOPI detector at SIS/GSI in the reactions Ru+Ru at 1.69 AGeV and Ni+Ni at 1.93 AGeV are presented. The K+ sideward flow is found to be anti-correlated (correlated) with the one of protons at low (high) transverse momenta. When compared to the predictions of a transport model, the data favour the existence of an in-medium repulsive K+ nucleon potential.Comment: 16 pages Revtex, 3 ps-figures, submitted to Phys. Lett.

    Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions

    Full text link
    The incident energy at which the azimuthal distributions in semi-central heavy ion collisions change from in-plane to out-of-plane enhancement, E_tran, is studied as a function of mass of emitted particles, their transverse momentum and centrality for Au+Au collisions. The analysis is performed in a reference frame rotated with the sidewards flow angle, Theta_flow, relative to the beam axis. A systematic decrease of E_tran as function of mass of the reaction products, their transverse momentum and collision centrality is evidenced. The predictions of a microscopic transport model (IQMD) are compared with the experimental results.Comment: 32 pages, Latex, 22 eps figures, accepted for publication in Nucl. Phys.

    Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression

    Get PDF
    Background: This report provides histopathological evidence to support prior neuroimaging findings of decreased volume and altered metabolism in the frontal cortex in major depressive disorder. Methods: Computer-assisted three-dimensional cell counting was used to reveal abnormal cytoarchitecture in left rostral and caudal orbitofrontal and dorsolateral prefrontal cortical regions in subjects with major depression as compared to psychiatrically normal controls. Results: Depressed subjects had decreases in cortical thickness, neuronal sizes, and neuronal and glial densities in the upper (II–IV) cortical layers of the rostral orbitofrontal region. In the caudal orbitofrontal cortex in depressed subjects, there were prominent reductions in glial densities in the lower (V–VI) cortical layers that were accompanied by small but significant decreases in neuronal sizes. In the dorsolateral prefrontal cortex of depressed subjects marked reductions in the density and size of neurons and glial cells were found in both supra- and infragranular layers. Conclusions: These results reveal that major depression can be distinguished by specific histopathology of both neurons and glial cells in the prefrontal cortex. Our data will contribute to the interpretation of neuroimaging findings and identification of dysfunctional neuronal circuits in major depression
    corecore