39 research outputs found

    Omega-3 fatty acids and genome-wide interaction analyses reveal DPP10-pulmonary function association

    Get PDF
    Rationale: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health. Objective: To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility. Methods: Associations of n-3 PUFA biomarkers (a-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV1, FVC, and FEV1/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N=16,134 of European or African ancestry). PFT-associated n-3 PUFAs were carried forward to genome-wide interaction analyses in the four largest cohorts (N=11,962) and replicated in one cohort (N=1,687). Cohort-specific results were combined using joint 2 degree-of-freedom (2df) meta-analyses of SNPassociations and their interactions with n-3PUFAs. Results: DPA and DHA were positively associated with FEV1 and FVC (P < 0.025), with evidence for effect modification by smoking and by sex. Genome-wide analyses identified a novel association of rs11693320-an intronic DPP10 SNP-with FVC when incorporating an interaction with DHA, and the finding was replicated (P-2df = 9.4 x 10(-9) across discovery and replication cohorts). The rs11693320-A allele (frequency, similar to 80%) was associated with lower FVC (P-SNP = 2.1 x 10(-9); beta(SNP) = 2161.0 ml), and the association was attenuated by higher DHA levels (P-SNPxDHA interaction = 2.1x10(-7); beta(SNPxDHA interaction) = 36.2 ml). Conclusions: We corroborated beneficial effects of n-3 PUFAs on pulmonary function. By modeling genome-wide n-3 PUFA interactions, we identified a novel DPP10 SNP association with FVC that was not detectable in much larger studies ignoring this interaction

    Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence

    Get PDF
    Cigarette smoking is a leading cause of preventable mortality worldwide. Nicotine dependence, which reduces the likelihood of quitting smoking, is a heritable trait with firmly established associations with sequence variants in nicotine acetylcholine receptor genes and at other loci. To search for additional loci, we conducted a genome-wide association study (GWAS) meta-analysis of nicotine dependence, totaling 38,602 smokers (28,677 Europeans/European Americans and 9925 African Americans) across 15 studies. In this largest-ever GWAS meta-analysis for nicotine dependence and the largest-ever cross-ancestry GWAS meta-analysis for any smoking phenotype, we reconfirmed the well-known CHRNA5-CHRNA3-CHRNB4 genes and further yielded a novel association in the DNA methyltransferase gene DNMT3B. The intronic DNMT3B rs910083-C allele (frequency = 44-77%) was associated with increased risk of nicotine dependence at P = 3.7 x 10(-8) (odds ratio (OR) = 1.06 and 95% confidence interval (CI) = 1.04-1.07 for severe vs mild dependence). The association was independently confirmed in the UK Biobank (N = 48,931) using heavy vs never smoking as a proxy phenotype (P = 3.6 x 10(-4), OR = 1.05, and 95% CI = 1.02-1.08). Rs910083-C is also associated with increased risk of squamous cell lung carcinoma in the International Lung Cancer Consortium (N = 60,586, meta-analysis P = 0.0095, OR = 1.05, and 95% CI = 1.01-1.09). Moreover, rs910083-C was implicated as a cis-methylation quantitative trait locus (QTL) variant associated with higher DNMT3B methylation in fetal brain (N = 166, P = 2.3 x 10(-26)) and a cis-expression QTL variant associated with higher DNMT3B expression in adult cerebellum from the Genotype-Tissue Expression project (N = 103, P = 3.0 x 10(-6)) and the independent Brain eQTL Almanac (N = 134, P = 0.028). This novel DNMT3B cis-acting QTL variant highlights the importance of genetically influenced regulation in brain on the risks of nicotine dependence, heavy smoking and consequent lung cancer.Peer reviewe

    Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders.</p> <p>Methods</p> <p>We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR) gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR).</p> <p>Results</p> <p>Our analysis revealed a genomic deletion containing the oxytocin receptor gene, <it>OXTR </it>(MIM accession no.: 167055), previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The proband's affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate <it>OXTR </it>expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that <it>OXTR </it>mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls.</p> <p>Conclusion</p> <p>Together, these data provide further evidence for the role of OXTR and the oxytocin signaling pathway in the etiology of autism and, for the first time, implicate the epigenetic regulation of <it>OXTR </it>in the development of the disorder.</p> <p>See the related commentary by Gurrieri and Neri: <url>http://www.biomedcentral.com/1741-7015/7/63</url></p

    Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking.

    Get PDF
    Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring

    Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits

    Get PDF
    Cigarette smoking is the leading cause of preventable morbidity and mortality. Genetic variation contributes to initiation, regular smoking, nicotine dependence, and cessation. We present a Fagerstrom Test for Nicotine Dependence (FTND)-based genome-wide association study in 58,000 European or African ancestry smokers. We observe five genome-wide significant loci, including previously unreported loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416), and extend loci reported for other smoking traits to nicotine dependence. Using the heaviness of smoking index from UK Biobank (N=33,791), rs2714700 is consistently associated; rs1862416 is not associated, likely reflecting nicotine dependence features not captured by the heaviness of smoking index. Both variants influence nearby gene expression (rs2714700/MAGI2-AS3 in hippocampus; rs1862416/TENM2 in lung), and expression of genes spanning nicotine dependence-associated variants is enriched in cerebellum. Nicotine dependence (SNP-based heritability = 8.6%) is genetically correlated with 18 other smoking traits (r(g)=0.40-1.09) and co-morbidities. Our results highlight nicotine dependence-specific loci, emphasizing the FTND as a composite phenotype that expands genetic knowledge of smoking. There is strong genetic evidence for cigarette smoking behaviors, yet little is known on nicotine dependence (ND). Here, the authors perform a genome-wide association study on ND in 58,000 smokers, identifying five genome-wide significant loci.Peer reviewe
    corecore