60 research outputs found

    Western Bumble Bee: Declines in the Continental United States and Range-Wide Information Gaps

    Get PDF
    In recent decades, many bumble bee species have declined due to changes in habitat, climate, and pressures from pathogens, pesticides, and introduced species. The western bumble bee (Bombus occidentalis), once common throughout western North America, is a species of concern and will be considered for listing by the U.S. Fish and Wildlife Service (USFWS) under the Endangered Species Act (ESA). We attempt to improve alignment of data collection and research with USFWS needs to consider redundancy, resiliency, and representation in the upcoming species status assessment. We reviewed existing data and literature on B. occidentalis, highlighting information gaps and priority topics for research. Priorities include increased knowledge of trends, basic information on several life‐history stages, and improved understanding of the relative and interacting effects of stressors on population trends, especially the effects of pathogens, pesticides, climate change, and habitat loss. An understanding of how and where geographic range extent has changed for the two subspecies of B. occidentalis is also needed. We outline data that could be easily collected in other research projects that would increase their utility for understanding range‐wide trends of bumble bees. We modeled the overall trend in occupancy from 1998 to 2018 of Bombus occidentalis within the continental United States using existing data. The probability of local occupancy declined by 93% over 21 yr from 0.81 (95% CRI = 0.43, 0.98) in 1998 to 0.06 (95% CRI = 0.02, 0.16) in 2018. The decline in occupancy varied spatially by landcover and other environmental factors. Detection rates vary in both space and time, but peak detection across the continental United States occurs in mid‐July. We found considerable spatial gaps in recent sampling, with limited sampling in many regions, including most of Alaska, northwestern Canada, and the southwestern United States. We therefore propose a sampling design to address these gaps to best inform the ESA species status assessment through improved assessment of how the spatial distribution of stressors influences occupancy changes. Finally, we request involvement via data sharing, participation in occupancy sampling with repeated visits to distributed survey sites, and complementary research to address priorities outlined in this paper

    The amphibians and reptiles of Mindanao Island, southern Philippines, II: the herpetofauna of northeast Mindanao and adjacent islands

    Get PDF
    We summarize all available amphibian and reptile species distribution data from the northeast Mindanao faunal region, including small islands associated with this subcenter of endemic vertebrate biodiversity. Together with all publicly available historical information from biodiversity repositories, we present new data from several major herpetological surveys, including recently conducted inventories on four major mountains of northeast Mindanao, and adjacent islands of Camiguin Sur, Dinagat, and Siargao. We present species accounts for all taxa, comment on unresolved taxonomic problems, and provide revisions to outdated IUCN conservation status assessments in cases where our new data significantly alter earlier classification status summaries. Together, our comprehensive analysis of this fauna suggests that the greater Mindanao faunal region possesses distinct subcenters of amphibian and reptile species diversity, and that until this area is revisited and its fauna and actually studied, with on-the-ground field work including targeted surveys of species distributions coupled to the study their natural history, our understanding of the diversity and conservation status of southern Philippine herpetological fauna will remain incomplete. Nevertheless, the northeast Mindanao geographical area (Caraga Region) appears to have the highest herpetological species diversity (at least 126 species) of any comparably-sized Philippine faunal subregion

    Loss of Multicellular Behavior in Epidemic African Nontyphoidal Salmonella enterica Serovar Typhimurium ST313 Strain D23580.

    No full text
    UnlabelledNontyphoidal Salmonella enterica serovar Typhimurium is a frequent cause of bloodstream infections in children and HIV-infected adults in sub-Saharan Africa. Most isolates from African patients with bacteremia belong to a single sequence type, ST313, which is genetically distinct from gastroenteritis-associated ST19 strains, such as 14028s and SL1344. Some studies suggest that the rapid spread of ST313 across sub-Saharan Africa has been facilitated by anthroponotic (person-to-person) transmission, eliminating the need for Salmonella survival outside the host. While these studies have not ruled out zoonotic or other means of transmission, the anthroponotic hypothesis is supported by evidence of extensive genomic decay, a hallmark of host adaptation, in the sequenced ST313 strain D23580. We have identified and demonstrated 2 loss-of-function mutations in D23580, not present in the ST19 strain 14028s, that impair multicellular stress resistance associated with survival outside the host. These mutations result in inactivation of the KatE stationary-phase catalase that protects high-density bacterial communities from oxidative stress and the BcsG cellulose biosynthetic enzyme required for the RDAR (red, dry, and rough) colonial phenotype. However, we found that like 14028s, D23580 is able to elicit an acute inflammatory response and cause enteritis in mice and rhesus macaque monkeys. Collectively, these observations suggest that African S. Typhimurium ST313 strain D23580 is becoming adapted to an anthroponotic mode of transmission while retaining the ability to infect and cause enteritis in multiple host species.ImportanceThe last 3 decades have witnessed an epidemic of invasive nontyphoidal Salmonella infections in sub-Saharan Africa. Genomic analysis and clinical observations suggest that the Salmonella strains responsible for these infections are evolving to become more typhoid-like with regard to patterns of transmission and virulence. This study shows that a prototypical African nontyphoidal Salmonella strain has lost traits required for environmental stress resistance, consistent with an adaptation to a human-to-human mode of transmission. However, in contrast to predictions, the strain remains capable of causing acute inflammation in the mammalian intestine. This suggests that the systemic clinical presentation of invasive nontyphoidal Salmonella infections in Africa reflects the immune status of infected hosts rather than intrinsic differences in the virulence of African Salmonella strains. Our study provides important new insights into the evolution of host adaptation in bacterial pathogens
    • 

    corecore