1,022 research outputs found

    Study of the Al-grading effect in the crystallisation of chalcopyrite Cu(In,Al)Se2 thin films selenised at different temperatures

    Get PDF
    Chalcopyrite CuIn1−xAlxSe2 (CIAS) thin films with an atomic ratio of Al/(In + Al) = 0.4 were grown by a two-stage process onto soda-lime glass substrates. The selenisation was carried out at different temperatures, ranging from 400 °C to 550 °C, for metallic precursors layers evaporated with two different sequences. The first sequence, C1, was evaporated with the Al as the last layer, while in the second one, C2, the In was the last evaporated element. The optical, structural and morphological characterisations led to the conclusion that the precursors sequence determines the crystallisation pathway, resulting in C1 the best option due to the homogeneity of the depth distribution of the elements. The influence of the selenisation temperature was also studied, finding 540 °C as the optimum one, since it allows to achieve the highest band gap value for the C1 sequence and for the given composition

    Apodized pupil Lyot coronagraphs for arbitrary apertures. V. Hybrid Shaped Pupil designs for imaging Earth-like planets with future space observatories

    Full text link
    We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of 101010^{10}. These new coronagraphs provide a key advance to enabling direct imaging and spectroscopy of Earth twins with future large space missions. Building on shaped pupil (SP) apodization optimizations, our approach enables two-dimensional optimizations of the system to address any aperture features such as central obstruction, support structures or segment gaps. We illustrate the technique with a design that could reach 101010^{10} contrast level at 34\,mas for a 12\,m segmented telescope over a 10\% bandpass centered at a wavelength λ0=\lambda_0=500\,nm. These designs can be optimized specifically for the presence of a resolved star, and in our example, for stellar angular size up to 1.1\,mas. This would allow probing the vicinity of Sun-like stars located beyond 4.4\,pc, therefore fully retiring this concern. If the fraction of stars with Earth-like planets is \eta_{\Earth}=0.1, with 18\% throughput, assuming a perfect, stable wavefront and considering photon noise only, 12.5 exo-Earth candidates could be detected around nearby stars with this design and a 12\,m space telescope during a five-year mission with two years dedicated to exo-Earth detection (one total year of exposure time and another year of overheads). Our new hybrid APLC/SP solutions represent the first numerical solution of a coronagraph based on existing mask technologies and compatible with segmented apertures, and that can provide contrast compatible with detecting and studying Earth-like planets around nearby stars. They represent an important step forward towards enabling these science goals with future large space missions.Comment: 9 pages, 6 figures, ApJ accepted on 01/04/201

    The paleoneurology of Ichthyopterygia and Sauropterygia:Diverse Endocranial Anatomies of Secondarily Aquatic Diapsids

    Get PDF
    Most meso- and megapredatory niches across Mesozoic marine ecosystems were gradually occupied by the secondarily aquatic Ichthyopterygia and Sauropterygia. Although their presumed Early Triassic origins remain obscured, the subsequent radiation and diversification of these diapsid superorders is reasonably well documented in the fossil record. In the first quarter of the twentieth century, the Triassic sauropterygian genera Nothosaurus and Placodus were among the first taxa for which the cranial endocast was extracted and described. The advent of computed tomography, circa 50 years after these pivotal paleoneurological investigations, has led to its adoption as the tool of choice for the non-destructive assessment of neurosensory adaptations in extinct vertebrates. Despite the increasing availability of paleoneurological data on extinct diapsids, Ichthyopterygia and Sauropterygia have received relatively modest, albeit growing, attention since. Here we review paleoneurological insights gleaned from these fossils to date and identify endocranial and neurosensory modifications associated with increasingly pelagic lifestyles and ecological specializations. Nevertheless, a broader ichthyopterygian and sauropterygian sample will be required to facilitate high-resolution taxon-wide comparisons and discern between endocranial changes accompanying progressive adaptation to aquatic niches and conservative features informing on phylogenetic identity. Systematic evaluation will reveal the neurosensory developments that facilitated these Mesozoic ecological success stories in aquatic environments

    Homodyne estimation of Gaussian quantum discord

    Get PDF
    We address the experimental estimation of Gaussian quantum discord for two-mode squeezed thermal state, and demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis which provides nearly optimal estimation for small value of discord. Besides, though homodyne detection is not optimal for Gaussian discord, the noise ratio to the ultimate quantum limit, as dictacted by the quantum Cramer-Rao bound, is limited to about 10 dB.Comment: 5+3 pages, 3 figures, published versio

    Heralded processes on continuous-variable spaces as quantum maps

    Get PDF
    Conditional evolution is crucial for generating non-Gaussian resources for quantum information tasks in the continuous variable scenario. However, tools are lacking for a convenient representation of heralded process in terms of quantum maps for continuous variable states, in the same way as Wigner functions are able to give a compact description of the quantum state. Here we propose and study such a representation, based on the introduction of a suitable transfer function to describe the action of a quantum operation on the Wigner function. We also reconstruct the maps of two relevant examples of conditional process, that is, noiseless amplification and photon addition, by combining experimental data and a detailed physical model. This analysis allows to fully characterize the effect of experimental imperfections in their implementations.Comment: 9 pages, 8 figures. Minor change

    Optimal interactions of light with magnetic and electric resonant particles

    Full text link
    This work studies the limits of far and near-field electromagnetic response of sub-wavelength scatterers, like the unitary limit and of lossless scatterers, and the ideal absorption limit of lossy particles. These limit behaviors are described in terms of analytic formulas that approximate finite size effects while rigorously including radiative corrections. This analysis predicts the electric and/or magnetic limit responses of both metallic and dielectric nanoparticles while quantitatively describing near-field enhancements.Comment: 9 pages, 8 figures, 2 table

    Anisotropic eddy-viscosity concept for strongly detached unsteady flows

    Get PDF
    The accurate prediction of the flow physics around bodies at high Reynolds number is a challenge in aerodynamics nowadays. In the context of turbulent flow modeling, recent advances like large eddy simulation (LES) and hybrid methods [detached eddy simulation (DES)] have considerably improved the physical relevance of the numerical simulation. However, the LES approach is still limited to the low-Reynolds-number range concerning wall flows. The unsteady Reynolds-averaged Navier–Stokes (URANS) approach remains a widespread and robust methodology for complex flow computation, especially in the near-wall region. Complex statistical models like second-order closure schemes [differential Reynolds stress modeling (DRSM)] improve the prediction of these properties and can provide an efficient simulationofturbulent stresses. Fromacomputational pointofview, the main drawbacks of such approaches are a higher cost, especially in unsteady 3-D flows and above all, numerical instabilities
    • 

    corecore