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Conditional evolution is crucial for generating non-Gaussian resources for quantum-information tasks in the
continuous variable scenario. However, tools are lacking for a convenient representation of heralded processes
in terms of quantum maps for continuous variable states, in the same way as Wigner functions are able to give
a compact description of the quantum state. Here we propose and study such a representation, based on the
introduction of a suitable transfer function to describe the action of a quantum operation on a Wigner function.
We also reconstruct the maps of two relevant examples of conditional processes, that is, noiseless amplification
and photon addition, by combining experimental data and a detailed physical model. This analysis allows us to
fully characterize the effect of experimental imperfections in their implementations.
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I. INTRODUCTION

Quantum mechanics is a probabilistic theory. The quan-
tum description of any experiment is based on probability
amplitudes—quantum states and measurements—and trans-
formations of such amplitudes—quantum processes. For each
of these objects there exist techniques to obtain the correspond-
ing mathematical tool from measured data: state tomography
[1,2], process tomography [3,4], and detector tomography [5].
There exist constraints necessary to attribute a near physical
meaning to abstract mathematics: for instance, a map acting
on density matrices’ space corresponding to a physical process
is normally completely positive (CP). This amounts to saying
that it must send physical states into physical states regardless
of observing the system by itself or as a part of a larger
ensemble to which it is decoupled [6]. Most of the studied
maps preserve the norm of the state, but there exist notable
exceptions: non-trace-preserving operations arise whenever a
measurement on the system is involved.

An interesting class of such processes involves heralding:
the evolution of a system is considered conditionally on the
outcome of a measurement on part of the system itself [7] (see
Fig. 1). In the context of optical quantum information, condi-
tional evolution has found several applications for simulating
strong nonlinearities at the few-photon level. This approach
has allowed researchers to build two-qubit [3] and three-qubit
quantum logic gates [8] and to generate quantum states with
non-Gaussian Wigner functions [9–13]. Such an evolution
is able to induce non-Gaussian transformations effective in
overcoming existing no-go theorems valid for purely Gaussian
resources [14–16]. Successful applications of such processes
to communication tasks have been demonstrated in several
experiments [17–20].

The experimental investigation is relatively at an early
stage: so far quantum process tomography of non-trace-
preserving maps has been implemented only in a reduced
two-qubit Hilbert space [21,22]. Here we show, by a detailed
physical model, the description of two conditioned processes

which are relevant to continuous-variable state manipulation:
the noiseless amplifier [19,20] and the single-photon addition
[11,23]. We can derive the expression of the map in the
well-known tensor form, and, as a step further, we illustrate a
transfer function formalism, which allows us to describe the
quantum process directly in the Wigner representation. This
will stimulate more in-depth investigation in this area and the
development of more sophisticated analytic tools.

II. QUANTUM MAPS

Any transformation acting on states needs to satisfy some
physically motivated mathematical constraints. In the simplest
case, a closed system, the evolution of a quantum state is
described by a unitary operator, Û , which transforms the

input state as ρ ′ = ÛρÛ
†
. More generally, the system will

be able to interact with the environment and a representation
in terms of a unitary operator won’t be sufficient to describe
this scenario; however, some essential features are retained,
in particular, the output state must be obtained from a linear
transformation of the input. The proper formalism then adopts
a generic linear map, E , such that ρ ′ = E(ρ). Similarly to
the previous expression, this map can be decomposed in the
incoherent application of a set of Kraus operators {Êi} [6]:

E(ρ) =
∑

i

Êiρ Ê
†
i , (1)

with, for deterministic processes,∑
i

Êi Ê
†
i = 1. (2)

One can note that this expression is similar to the formalism
used for a positive-operator-valued measure (POVM) since
a generic transformation can be seen as the application of a
unitary operation on a system composed by the input state
and the environment, followed by a measurement of the
environment for which we do not know the outcome. Another
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expression, more convenient for data visualization, uses the
tensor {En,m

l,k }:

[E(�)]l,k =
∑
n,m

En,m
l,k �n,m, (3)

where the elements of the tensor are given by En,m
l,k =∑

i〈l|Êi |n〉〈m|Ê†
i |k〉.

These maps cannot be completely arbitrary: an essential
requirement is that they lead physical states into physical
states. Therefore, these maps have to send positive operators
into positive operators and, for deterministic processes, are
required to preserve the trace; so they directly give a physical
density matrix without the need for other operations. Further-
more, in the majority of the cases, we also demand complete
positiveness: this amounts to saying that the evolution must
remain physical when the system is entangled with a second
object.

A somewhat different context arises when considering
a conditional process: it implies a nonlinear evolution of
the state due to the renormalization operation. Indeed,
these processes often aim to approximate a nonunitary and
nonphysical—i.e., trace increasing—linear operator Ĉ and
transform a pure state |α〉 into

√
N (α)Ĉ|α〉, where N (α)

is the normalization factor, which might present a complex
dependence on the state. Even if Ĉ is actually linear, this
linearity is hidden if we consider the physical inputs, as√

N (α)Ĉ|α〉 + √
N (β)Ĉ|β〉 �= √

N (α + β)Ĉ(|α〉 + |β〉). As
a result, in order to represent it as a linear quantum map
one should use a non-trace-preserving map and keep the
normalization step for the result of the process. Moreover, a
map should include one more piece of information to describe
a conditional process: the success probability.

In fact, a conditional evolution acts as follows: the system
evolves through a probabilistic device, and we only accept
those runs when a successful event is flagged (Fig. 1). Clearly,
the overall process including both successes and failures can
be modeled by a deterministic quantum map. In terms of Kraus
decomposition [Eq. (3)] passage from the overall process to the

FIG. 1. (Color online) (a) Trace-preserving quantum operation.
The input state � is transformed by the quantum channel E in the
output state E[�]. The trace of the input state is preserved by the
channel: Tr

{
E[�]

} = 1. (b) Heralded quantum operation. The input
state � is transformed by the quantum channel F in the output state
F[�] upon realization of a conditional event. The trace of the input
state is, in general, not preserved by the channel: Tr

{
F[�]

}
< 1.

conditional one consists in keeping only the subset of the Kraus
operators corresponding to the result of the measure used for
heralding. Thus we easily see that the trace of the output
state gives our additional information: the success probability,
and a quantum map only needs to be non-trace-increasing to
correspond to a physical operation [24].

The method explained above gives a neat picture of the
process for discrete-variable systems: for instance, one can
recognize almost at glance the behavior of a qubit process
by inspecting the corresponding tensor. This is more complex
when dealing with continuous-variable systems, when often
looking at the states as Wigner quasi-distribution in the phase
space can convey information in a more compact and effective
way. Therefore, a method to represent quantum processes in
the Wigner representation would be highly desirable. Such
an object has been proposed for the unitary processes [25,26]
and for Gaussian operations [15] and has similarities with time
evolution approaches based on differential equations [27]; here
we give an explicit extension of these results to the case of a
generic map, E .

For this purpose, we can reason in analogy with the
probability distribution P(x,p) for physical position and
momentum of a classical particle. The action of a Markovian
process will modify such distribution via a transfer function
f(x ′,p′,x,p), describing the odds that a particle initially in the
position (x,p) will eventually end in (x ′,p′). The distribution
P ′(x ′,p′) of the coordinates at the end of the process will result
from the sum of all these elementary displacements:

P ′(x ′,p′) =
∫

dx dpP(x,p) f(x ′,p′,x,p). (4)

Hence, we would like to maintain this structure for quantum
processes as well by introducing a suitable transfer function,
fE (x ′,p′,x,p), by which the input Wigner function W (x,p) can
be turned into the output W ′(x ′,p′) by the integral transform:

W ′(x ′,p′) =
∫

dx dp W (x,p) fE (x ′,p′,x,p). (5)

In order to see that this is actually the case, we start from the
case where only one Kraus operator Êi is present; the general
result can be obtain by linearity. The Wigner function of the
output state then reads

W ′(x ′,p′) = 1

2π

∫
dν eiνp′

〈
x ′ − ν

2

∣∣∣∣Êiρ Ê
†
i

∣∣∣∣x ′ + ν

2

〉
. (6)

We invoke the completeness relation
∫ |s〉〈s|ds = 1 and the

formula 〈s|E|t〉 = ∫
ei(s−t)pW ( s+t

2 ,p)dp to obtain

W ′(x ′,p′) = 1

2π

∫
dp dν ds dt eiνp′

ei(s−t)pW

(
s + t

2
,p

)

×
〈
x ′ − ν

2

∣∣∣∣Êi |s〉〈t |Ê†
i

∣∣∣∣x ′ + ν

2

〉
, (7)

and then, by a variable substitution, the expression for the
transfer function associated to the operator Êi :

fi(x
′,p′,x,p) = 1

2π

∫
dμ dν eiνp′

eiμp

〈
x ′ − ν

2

∣∣∣∣Êi

∣∣∣∣x + μ

2

〉

×
〈
x − μ

2

∣∣∣∣Ê
†
i

∣∣∣∣x ′ + ν

2

〉
, (8)
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which implies∫
fi(x

′,p′,x,p)dx ′dp′ = W
Ê

†
i Êi

(x,p), (9)

∫
fi(x

′,p′,x,p)dxdp = W
Êi Ê

†
i

(x ′,p′). (10)

Based on the remark that each Êi acts independently, the
transfer function associated with a generic process reads

fE (x ′,p′,x,p) =
∑

i

fi(x
′,p′,x,p), (11)

where each function fi corresponds to a Kraus operator with
the relation given by Eq. (8). It can be checked that using
this formula as the definition, and using the relation between
En,m

l,k and Êi , one arrives at the original definition. The transfer
function might be a distribution, but from Eq. (8) it appears
that it is always real. Also, normalization enforces that∫

fi(x
′,p′,x,p)dx ′dp′dxdp = Tr(Ê

†
i Êi) (12)

= Tr(Êi Ê
†
i ). (13)

Those properties can easily be extended to the whole transfer
function. In particular, in the case of a deterministic map we
have ∫

fi(x
′,p′,x,p)dx ′dp′ = 1, (14)

whereas for a nondeterministic process the integral of
W

Ê
†
i Êi

(x,p)W (x,p) gives the success probability.
We also can express the transfer function in terms of the

process tensor, starting with Eq. (3) rewritten in the form

E(�) =
∑
n,m

∑
l,k

En,m
l,k Tr(�|n〉〈m|)|l〉〈k|. (15)

We can use the properties of the Wigner functions to evaluate
the expectation value Tr(�|n〉〈m|) and derive

W ′(x ′,p′) = 2π

∫
dx dp W (x,p)

×
( ∑

m,n

∑
l,k

En,m
l,k W|n〉〈m|(x,p)W|l〉〈k|(x ′,p′)

)
,

(16)

where W|l〉〈k|(x,p) is the Wigner representation of |l〉〈k|.
Therefore, the quantum operation E is conveniently repre-
sented by the transfer function

fE (x ′,p′,x,p) = 2π
∑
n,m

∑
l,k

En,m
l,k W|n〉〈m|(x,p)W|l〉〈k|(x ′,p′).

(17)

From this equation one can also easily derive the link between
transfer function and other representations as “vectorized”
density matrices [28] and Choi-Jamiokowski matrices [29].

The quantum transfer function still bares resemblance to
the Markovian processes. This can be seen by inspecting
what happens when chaining two processes: E = E1 ◦ E2.
Under these circumstances, we obtain the complete transfer

function as

fE (x ′,p′,x,p) =
∫

dx ′′ dp′′ fE2
(x ′,p′,x ′′,p′′)fE1

(x ′′,p′′,x,p),

(18)

which is similar to the Chapman-Kolmogorov equation for
Markovian processes [26]. This reinforces the view that, from
a classical viewpoint, fE (x ′,p′,x,p) should be interpreted as
a transition probability from {x,p} to {x ′,p′}. The analogy
cannot be extended further in the quantum domain: in the
following, we illustrate a case where fE (x ′,p′,x,p) can actually
take negative values. As for the Wigner function [30,31],
this negativity is linked to nonclassicality. However, we also
show how the temptation to transform those links into a direct
quantitative connection has to be resisted.

One can note that such a definition uses very few assump-
tions about the transformation and so can be extended to more
general processes, as long as the transformation remains linear
in the quantum state. In particular, as for the tensor form [32],
it can be used with trace-increasing maps, which, even if they
are not physical, are very common in theoretical quantum
physics and include most of the nonunitary operators that are
approximated by conditional processes.

III. DETERMINATION OF THE TRANSFER FUNCTION

In order to determine the expression of the transfer function,
one could first decompose it in a sum of transfer functions
corresponding to the different heralding events, in a way
similar to Eq. (11). Then, each of those transfer functions
can be constructed by composing, with the use of Eq. (18),
some basic transfer functions corresponding to the different
elements of the process. The basic transfer functions can have
the same number of input and output modes, corresponding
to a basic transformation; only output modes, corresponding
to the introduction of an ancilla state; or only input modes,
corresponding to a measurement.

The basic transformations can be determined by Eq. (8) or
by simple considerations. In particular all transformations that
can be expressed as coordinate transformations have transfer
functions composed of Dirac distributions which directly come
from the coordinate transformation. Another interesting basic
transformation is the one given by a coordinate transformation
Mi (i = x,p) for each quadrature of the input mode and a
quadrature of a vacuum ancilla, followed by a partial trace on
the ancilla. If the transformation matrix is

Mi =
(

μi νi

ενi μi

)
, (19)

det(Mi) = 1, (20)

where ε = ±1, then the transfer function of this operation is

f (x ′,p′,x,p) = νxνp

π
exp

[
−

(
x ′ − μxx

νx

)2]

× exp

[
−

(
p′ − μpp

νp

)2]
. (21)

Table I shows some basics transfer functions obtained by those
considerations with their tensor form.
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TABLE I. Tensor process and transfer functions of some basic transformations.

Transformation Tensor (see [32]) Transfer function

Identity δk,nδl,m δ(x − x ′)δ(p − p′)

Phase rotation eθ(k−l)δk,nδl,m δ(x − cos θx ′ + sin θp′)δ(p − cos θp′ − sin θx ′)

Displacement
√

m!n!l!k!e|α|2 ∑m

i=0

∑
j=0 n

(
m

i

)(
n

j

)
δ(x − x ′ + √

2Re(α))δ(p − p′ + √
2Im(α))

(−1)m+n−i−j

(l−i)!(k−j )! αl+n−i−j ᾱk+m−i−j

√
k!l!

(m!n!03/2 cosh(r)k+l−1
∑k

i=o

∑l

j=0 2i+j

Squeezing ×
√

(n+k−2i)!(l+m−2j )!(
n+k

2 −i
)

!
(

m+l
2 −j

)
!

(− tanh(r)
2

)(m+n+l+k)/2
δ(x − erx ′)δ(p − e−rp′)

× (n+k−i)!
i!(k−i)!

(m+l−j )!
k!(l−j )!

1+(−1)n+k

2
1+(−1)m+l

2√
m1!m2!n1!n2!
l1!l2!k1!k2!

∑l1
i=0

∑k1
j=0(−1)l1+k1−i−j

Beam splitter ×(
l1
i

)(
l2

m1−i

)(
k1
j

)(
k2

n1−j

)
δ(x1 − tx ′

1 + rx ′
2)δ(p1 − tp′

1 + rp′
2)

×t2i+2j+l2+k2−m1−n1rl1+k1+m1+n1−2i−2j ×δ(x2 − tx ′
2 − rx ′

1)δ(p2 − tp′
2 − rp′

1)

×δm1+m2,l1+l2δn1+n2,k1+k2√
m1!m2!n1!n2!
l1!l2!k1!k2!

(g−1)(m1+n1)/2

g(m1+n1+l2+k2)/2+1

Parametric ×δn2−n1,k2−k1δm2−m1,l2−l1 δ(
√

gx1 + √
g − 1x2 − x ′

1)δ(
√

gp1 − √
g − 1p2 − p′

1)

down-conversion ×∑k1
i=0

∑l1
j=0

(n2+i)!(m2+j )!
(n1−k1+i)!(m1−l1+j )! ×δ(

√
gx2 + √

g − 1x1 − x ′
2)δ(

√
gp2 − √

g − 1p1 − p′
2)

× (−1)i+j gk1+l1−i−j (g−1)i+j−(k1+l1)/2

i!(k1−i)!j !(l1−j )!

Attenuation
√

m!n!
l!k!

η(l+k)/2(1−η)m−l

(m−l)! δm−l,n−k
1

π (1−η) exp
( − (x′−√

ηx)2

1−η
− (p′−√

ηp)2

1−η

)

Parametric amplification
√

l!k!2n+m

n!m!2l+k
2k−m

(k−m)!
gk+(m−n)/2

(g+1)k+n+1 δl−n,k−m
1

π (g−1) exp
(− (x′−√

gx)2

g−1 − (p′−√
gp)2

g−1

)

The basic functions with only output or input modes
are even simpler to determine. Indeed the first ones are
exactly the Wigner function of the introduced ancilla, while
the second ones are the Wigner function of the projector
corresponding to the measure multiplied by a factor 2π . With
those considerations, the transfer function can in fact be seen
as an extension of the Wigner function.

Finally, the different heralding events are generally the ideal
heralding and the faulty ones. Consider for instance a heralded
process when conditioning can be faulty in a certain fraction
of the total events. We can call F1 the correct process and F2

the failure. The output �out state of the whole process will be
a convex combination of

�out = ξ
F1(�in)

P1
+ (1 − ξ )

F2(�in)

P2
, (22)

where P1,2 = Tr[F1,2(�in)] are the success probabilities used
here to normalize the results of both maps. If we notice that
ξ = P1/(P1 + P2), we can then infer that the transformation
which includes both events is given by

�out = F1(�in) + F2(�in)

P1 + P2
, (23)

where P1 + P2 is effectively the trace of F1(�in) + F2(�in).
This amounts to saying the correct map is F = F1 + F2,
provided that F2 has the correct occurrence probability. This

last point is the most crucial, and the determination of the good
faulty process F2 can be complicated. The simplicity of the
expression is due to the fact that the maps already contain the
success probability for the heralding process. Nevertheless we
should notice that if the false heralding comes from a noisy
mode in the input one should add (at least) a supplementary
input mode to the map.

IV. EXAMPLE 1: THE NOISELESS AMPLIFIER

We now inspect two important quantum processes with the
formalism of quantum maps: we are able to highlight clear
signatures of nonclassicality and observe how they degrade
under experimental conditions. As an interesting feature, we
are able to capture such nonclassical aspects at a glance. Our
analysis first concerns the noiseless amplifier (Ĉ = gn̂, where
n̂ is the number operator and g > 1) [19,20]. We do not adopt
a “black box” approach, but rather a model of the process is
used so as to arrive at a description in term of generalized
maps, also in the case when all the imperfections are taken
into account.

Our device (Fig. 2) is the teleportation-based amplifier
proposed in Ref. [33]: its working principle is to use a
nonmaximally entangled resource—a single photon split on
an asymmetric beam splitter (A-BS)—to perform the telepor-
tation of a coherent state |α〉. The analog of the Bell-state
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FIG. 2. (Color online) Layout of the implementation of the
noiseless amplifier [19]. A single photon is conditionally generated
upon detection of a single photon on detector D0. After splitting in
an asymmetric beam-splitter (A-BS), the single photon is mixed with
the input coherent state |α〉 in a symmetric beam-splitter (S-BS).
The noiseless amplification process occurs conditionally with the
detection of a photon on detector D1. The beam-splitter operations are
performed exploiting polarization (double-sided arrows in the figure).
Inset: Fidelities between the experimental density matrices [19] and
the prediction of the model.

measurement consists of superposing the reflected portion
of the single photon with the input state on a symmetric
beam-splitter (S-BS) and performing photon counting at
the outputs. Successful runs are heralded by the presence
of a single photon on one output and the vacuum on the
other. This operation produces an output state in the form
N (α)(|0〉 + gα|1〉), where g is a gain factor determined by
the reflexion R of the A-BS, g = √

(1 − R)/R. For weak
input intensities ‖α‖ � 0.1, this truncated expansion is a
good approximation of the amplified state |gα〉. Figure 3(a)
shows the elements Fm,m

k,k of the corresponding map, which
would normally describe the population transfer among Fock
states. In this case, instead, we notice the enhancement of
the single-photon component and the suppression of all the
higher-order terms. The complete process is a truncated form
Ĉ = gn̂(n̂), where (n̂) is 1 for n � 1 and zero otherwise.

Several departures from the ideal behavior prevent us from
matching these simple predictions in the experiment, and a
more refined description is then necessary. One of the main
limitations is represented by single-photon detection. While
the apparatus is quite robust against limited efficiency [19,33],
it is nevertheless affected by the lack of photon-number res-
olution. The avalanche photodiode (APD) D1, which heralds
the successful events of the amplification process, will give a
click each time that some light is absorbed, irrespective of the
energy. This causes triggering events which do not originate
from a single photon on D1, which result in a transfer of
population from higher-energy states to the one-photon Fock
state, as it appears in Fig. 3(b), where the corresponding tensor
is shown.

Single photons are produced by down-conversion in a
nonlinear crystal: whenever an APD D0 detects the presence
of one photon, it heralds the twin photon on the correlated
mode. The probabilistic nature of the emission allows for
multiple-pair generation, which the APD is not able to
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FIG. 3. (Color online) (a) Diagonal elements Fm,m
k,k of the ideal

truncated noiseless amplifier process. (b) Diagonal elements Fm,m
k,k

with nonunit detection efficiency of the APD D1 (μ = 0.11) and
lack of photon-number resolution. (c) Diagonal elements Fm,m

k,k

with nonideal generation of the single-photon state (δ = 1.089).
(d) Diagonal elements Fm,m

k,k including both experimental imperfec-
tions.

discriminate from single-pair events. The output state will not
be a pure single photon, but will present contributions from
higher-order terms. Furthermore, one needs to consider that the
matching of the pump field with the observed modes will not
be perfect. This results in excess noise in both the conditioning
and signal modes, spoiling even more the quality of our
single-photon state. This can be assessed in the experiment by
measuring the quadrature distributions [12] and is described
by the parameter δ [34,35], ranging from δ = 2 for a pure
heralded single-photon state to δ = 0 for a thermal state. The
effect on the process is illustrated in Fig. 3(c) showing how a
higher-order number from multiple-pair emission can end up
being populated.

Considering both imperfection sources provides an ex-
haustive model of our experiment: its accuracy, checked by
calculating the fidelities between the experimental density
matrices [19] and the prediction of the model, good enough,
with an average figure of ∼99.5% for weak intensities ‖α‖ � 1
(right inset of Fig. 2), to use it for calculating the process
map. The results, for the tensorial form, are summarized in
Fig. 3(d): the two mechanisms take place independently and
cause a lesser gain than expected and the presence of noise in
the amplified states.

The transfer function can be decomposed in a correctly
heralded one and a faulty one. For the correctly heralded
transfer function, one could start with the beam-splitters: the
asymmetric one is obtained by composing, with the use of
Eq. (18), the beam-splitter transfer function with the Wigner
function of the experimental single photon and the vacuum. In
the same way, the transfer function for the part containing the
S-BS is determined by composing the beam-splitter transfer
function with the transfer function of the APD (Wigner
function of the projection operator multiplied by 2π composed
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with an attenuation transfer function) on one output and an
attenuation (modelizing the mode-matching on one input) and
then tracing on the remaining output mode. The final correctly
heralded transfer function is obtained by composing those
two transfer functions. The faulty transfer function is simply
determined by composing an attenuation transfer function
(taking into account the mode matching and the S-BS) with
the APD transfer function.

While an inspection in the Fock basis can be informative,
it does not lead to the most natural description of a process
for continuous-variable states; also, from a practical point,
it might be cumbersome to verify some properties such as
the Gaussianity of the process or its nonclassicality from
the expression of the F tensor. For this purpose, a useful
approach consists of inspecting the trend of the associated
transfer function: while this object generally acts on pairs
of two-dimensional vectors, 
r = (x,p) and 
r ′ = (x ′,p′), for
phase-invariant processes—as is the case for the noiseless
amplifier—the transfer function can only depend on r =√

x2 + p2, r ′ =
√

x
′2 + p

′2, and θ = cos−1( 
r·
r ′
rr ′ ). The transfer

function for the noiseless amplifier is presented in Fig. 4,
comparing the cases when an ideal single photon is used as
an ancilla and with the actual resources. Nonclassical features
are clear in the ideal limit with the negative values, especially
around r ′ = 0. However, under experimental conditions, these
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FIG. 4. (Color online) Contour plots of fF (r ′,r,θ ) for the noise-
less amplification process as a function of (r ′,r) for different values
of θ . (a) Low APD detection efficiency μ and ideal generation of
the single photon (δ = 2). (b) Low APD detection efficiency μ and
nonideal generation of the single photon (δ = 1.089).

signatures are smoothed by the imperfections of the setup,
though there remains a negative region. In more detail, we
observe how low values of the transfer function for high
r ′ correspond to the saturation of the amplifier, i.e., the
impossibility of having more than one photon at the output. The
negative peak determines the non-Gaussianity of the output
states by causing a small negative region in the Wigner function
of the output state; nevertheless, this feature vanishes rather
quickly with the imperfection and is not visible in a realistic
output state, as is shown in Fig. 4. Moreover, the slightly
negative region around r = 0, which does not induce negativity
in the Wigner function, remains even with the imperfections,
leading to a more resilient negativity of the transfer function
than the Wigner function of the output states. We can notice
that the regions for small r and r ′ are quite different around
θ = 0 and θ = π , this is due to the fact that the amplifier keeps
the phase of the “small” states, whereas for bigger values of
r and r ′ the transfer function is almost independent of θ since
the higher photon-number terms in the input state often trigger
the heralding, leading to a single photon (with losses) in the
output state. A last remark concerns the increasing peak with
r and the different scales between the two maps originating
from the variation of the success probability.

V. EXAMPLE 2: PHOTON ADDITION

The extreme negative value of a Wigner function can be
used as a quantifier of its nonclassicality [23]. However, an
intuitive extension of such reasoning to the transfer functions
would be severely affected by the probabilistic character of
the process itself. Here we illustrate these considerations
in a second example: the single-photon addition (which is
an experimental approximation of Ĉ = â†). As above, our
description is mediated by a model of the physical process.

In our implementation, photon addition is achieved by
feeding the input state in an optical parametric amplifier
(OPA) driven at low gain g = cosh2 χ , where χ measures
the nonlinear interaction strength and it is proportional to the
pump intensity. To the first order, this process adds a photon

FIG. 5. (Color online) Layout of the single-photon addition ex-
periment [23]. A single photon is conditionally added upon detection
of a single photon on detector D0. As above, the beam-splitters exploit
polarization (double-sided arrows in the figure). Inset: Fidelities
between the experimental density matrices [23] and the prediction
of the model.

062327-6



HERALDED PROCESSES ON CONTINUOUS-VARIABLE . . . PHYSICAL REVIEW A 86, 062327 (2012)

0 1 2 3 4 5
0

1
2

3
4

5

0

0.5

1

k
m

Fm,m
k,k

(a)
0 1 2 3 4 5

0
1

2
3

4
5

0

0.5

1

k
m

Fm,m
k,k

(b)

0 1 2 3 4 5
0

1
2

3
4

5

0

0.5

1

k
m

Fm,m
k,k

(c)
0 1 2 3 4 5

0
1

2
3

4
5

0

0.5

1

k
m

Fm,m
k,k

(d)

FIG. 6. (Color online) (a) Diagonal elements Fm,m
k,k of the ideal

photon addition process. (b) Diagonal elements Fm,m
k,k for the case of

a conditioned OPA driven at χ = 0.105. (c) Diagonal elements Fm,m
k,k

with a parasitic gain γ = 0.425 and very low gain. (d) Diagonal
elements Fm,m

k,k including both experimental imperfections.

pair shared by the signal mode and a correlated mode, on which
an APD D0 is placed; due to the nondeterministc nature of the
process, the successful events are triggered by a detection event
from D0 (Fig. 5). This method was introduced in Ref. [36] and
then adopted for tests of the commutation rules [37,38] and
the analysis of nonclassicality [39] and non-Gaussianity [23].

The main source of noise here can be identified in the
imperfect matching between the pump and the signal modes,
which results in a parasite gain h = cosh2 γχ . An estimate for
these two gains, taken from a fit of their non-Gaussianity [23],
is χ = 0.105, and γ = 0.425 [23]. A third imperfection arises
from the fact that spurious events might happen at D0, due
either to dark counts or to clicks originating from nonmatching
modes. The fidelity between modeled and the reconstructed
states using coherent states as inputs is satisfactory, although
the data might be affected by some extra noise likely due
to low-frequency fluctuations of the average level of the
homodyne current.

As it appears from the comparison of Figs. 6(a) and 6(b), the
gain χ is chosen to be sufficiently low so that two-pair events

(a) (b)

FIG. 7. (Color online) Plots of fF (r ′,r,θ ) for the photon addition
process as a function of (r ′,r) for θ = 0. (a) With ideal OPA (driven at
χ = 0.105) and photon counter. (b) With a parasitic gain γ = 0.425
and an APD.
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FIG. 8. (Color online) Plots of fF (r ′,r,θ ) for the photon addition
process as a function of r ′ − r . The plain line correspond to the
experimental conditions (γ = 0.425 and an APD), and the dashed
line to the ideal case. (a) For θ = 0 and r + r ′ = 2. (b) For θ = 0 and
r + r ′ = 20.

are not significant: the transfer of population by more than one
photon is low. On the other hand, the effect of the parasite
gain seems as important: the sheer effect is the presence of
uncorrelated clicks at D0 that leave the state unchanged. This
corresponds to the diagonal terms in Fig. 6(c), considered in
the limit of extremely low gain χ → 0. The overall process
simply results in the presence of these two imperfections. For
the sake of simplicity we have only considered the case of
low detection efficiency at D0 [Fig. 6(d)]. In this example,
the adoption of the quantum map formalism is revealed to be
particularly clear and useful for the analysis of the process: not
only does it confirm our intuition about the behavior of parasite
processes but also it gives us a way of quantifying their effect
in a way that does not depend on the particular input.

The correctly heralded transfer function is easy to de-
termine: it is only a composition of the parametric down-
conversion transfer function with the Wigner function of
vacuum on one input and the APD transfer function and
attenuation transfer function on the outputs. As for the
preceding example, we can use the radial symmetry of the
process to express the transfer function in the simplest form
fF (r ′,r,θ ). In Fig. 7 we show the transfer function fF (r ′,r,0)
as a function of (r ′,r), as this contains much information
about the physics: there we compare the case of low gain r

and photon-number discrimination, and the full model of our
experiment. For both cases, the transfer function has nonzero
values only around r ′ = r and for θ = 0: this indicates that
the amplitude and the phase are mostly unchanged by the
process. The increase of the positive peak with the amplitude
corresponds to the growth of the success rate with the number
of photons and is more visible in the second graph because
of the inability to discriminate the photon number. Finally, the
negative peak introduces a negative part in the resulting Wigner
function and is a sign of the non-Gaussianity of the process.
We can note that the difference between the two scales (Fig. 8)
is only due to the differences in the success rate, even for the
negative peak. This implies that the size of the negative peak
cannot be readily used to quantify the quantumness of a map.

VI. CONCLUSION

We have inspected two important processes for continuous-
variable states with the formalism of quantum maps: these
can convey interesting physical information about the process
independently of the state. The adoption of a description in
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terms of transfer functions offers a compact, insightful view
of the process, along the same lines of what happens with
the Wigner function for quantum states. We have applied
this method to the description of the realistic operation of
a noiseless amplifier and of a photon-adder, evidenciating how
experimental imperfections shape the features of the transfer
function.
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available at http://www.phys.ens.fr/cours/college-de-france/
1983-84/1983-84.htm.

[27] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of
Markovian and Non-Markovian Quantum Stochastic Methods
with Applications to Quantum Optics, Springer Series in
Synergetics (Springer, New York, 2004).

[28] K. Blum, Density Matrix Theory and Applications, Atomic,
Optical, and Plasma Physics (Springer, New York, 2012).

[29] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States:
An Introduction to Quantum Entanglement (Cambridge Univer-
sity Press, Cambridge, UK, 2006).

[30] C. Ferrie and J. Emerson, J. Phys. A 41, 352001
(2008).

[31] R. W. Spekkens, Phys. Rev. Lett. 101, 020401
(2008).

[32] S. Rahimi-Keshari, A. Scherer, A. Mann, A. T. Rezakhani, A. I.
Lvovsky, and B. C. Sanders, New J. Phys. 13, 013006 (2011).

[33] T. C. Ralph and A. P. Lund, in Quantum Communication
Measurement and Computing Proceedings of 9th International
Conference, AIP Conference Proceedings Vol. 1110, edited by
A. I. Lvovsky (American Institute of Physics, New York, 2009),
p. 155.

[34] A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, Phys. Rev.
Lett. 96, 213601 (2006).

[35] F. Ferreyrol, R. Blandino, M. Barbieri, R. Tualle-Brouri, and
P. Grangier, Phys. Rev. A 83, 063801 (2011).

[36] A. Zavatta, S. Viciani, and M. Bellini, Phys. Rev. A 72, 023820
(2005).

[37] V. Parigi, A. Zavatta, M. S. Kim, and M. Bellini, Science 317,
1890 (2007).

[38] A. Zavatta, V. Parigi, M. S. Kim, H. Jeong, and M. Bellini, Phys.
Rev. Lett. 103, 140406 (2009).

[39] A. Zavatta, V. Parigi, and M. Bellini, Phys. Rev. A 75, 052106
(2007).

062327-8

http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevLett.93.080502
http://dx.doi.org/10.1103/PhysRevLett.93.080502
http://dx.doi.org/10.1126/science.1162086
http://dx.doi.org/10.1038/nphys1133
http://dx.doi.org/10.1103/PhysRevA.67.042104
http://dx.doi.org/10.1103/PhysRevA.67.042104
http://dx.doi.org/10.1038/nphys1150
http://dx.doi.org/10.1103/PhysRevLett.87.050402
http://dx.doi.org/10.1103/PhysRevLett.92.153601
http://dx.doi.org/10.1103/PhysRevLett.92.153601
http://dx.doi.org/10.1103/PhysRevA.70.053821
http://dx.doi.org/10.1103/PhysRevA.70.053821
http://dx.doi.org/10.1126/science.1122858
http://dx.doi.org/10.1038/nature06054
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevLett.89.137904
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevLett.98.030502
http://dx.doi.org/10.1038/nphoton.2010.1
http://dx.doi.org/10.1038/nphoton.2010.1
http://dx.doi.org/10.1103/PhysRevLett.104.123603
http://dx.doi.org/10.1038/nphoton.2010.35
http://dx.doi.org/10.1103/PhysRevLett.95.210505
http://dx.doi.org/10.1103/PhysRevA.82.042307
http://dx.doi.org/10.1103/PhysRevA.82.063833
http://dx.doi.org/10.1016/0003-4916(79)90296-3
http://dx.doi.org/10.1016/0003-4916(79)90296-3
http://www.phys.ens.fr/cours/college-de-france/1983-84/1983-84.htm
http://www.phys.ens.fr/cours/college-de-france/1983-84/1983-84.htm
http://dx.doi.org/10.1088/1751-8113/41/35/352001
http://dx.doi.org/10.1088/1751-8113/41/35/352001
http://dx.doi.org/10.1103/PhysRevLett.101.020401
http://dx.doi.org/10.1103/PhysRevLett.101.020401
http://dx.doi.org/10.1088/1367-2630/13/1/013006
http://dx.doi.org/10.1103/PhysRevLett.96.213601
http://dx.doi.org/10.1103/PhysRevLett.96.213601
http://dx.doi.org/10.1103/PhysRevA.83.063801
http://dx.doi.org/10.1103/PhysRevA.72.023820
http://dx.doi.org/10.1103/PhysRevA.72.023820
http://dx.doi.org/10.1126/science.1146204
http://dx.doi.org/10.1126/science.1146204
http://dx.doi.org/10.1103/PhysRevLett.103.140406
http://dx.doi.org/10.1103/PhysRevLett.103.140406
http://dx.doi.org/10.1103/PhysRevA.75.052106
http://dx.doi.org/10.1103/PhysRevA.75.052106



