79 research outputs found

    Conception, réalisation et étude de micro-capteurs à onde de Love pour applications en milieu gazeux. Cas de la détection de composés organophosphorés

    Get PDF
    Ces travaux concernent l'étude des micro-capteurs à ondes de Love, aussi bien d'un point de vue théorique qu'expérimental. La résolution analytique des équations de propagation dans la structure multicouche à ondes de Love a permis l'étude des propriétés de ces ondes et la définition de dispositifs optimisés vis-à-vis de la sensibilité gravimétrique. L'influence des paramÚtres de la structure et de la couche sensible sur cette sensibilité a été modélisée. Des prototypes réalisés suivant les caractéristiques optimales ont été testés en milieu gazeux. Des composés organophosphorés ont été détectés avec une trÚs bonne sensibilité, compatible avec l'application visée. L'étude des différents mécanismes mis en jeu lors de la détection a été abordée.This research work deals with the study of Love-wave micro-sensors, from both a theoretical and an experimental point of view. The analytical resolution of propagation equations in the multilayer Love-wave structure allowed the study of waves properties and the definition of optimized devices as regards gravimetric sensitivity. The influence of the structure parameters and the sensitive coating on this sensitivity was modelized. Prototypes made in accordance with the optimal characteristics were tested in gas medium. Organophosphorus compounds were detected with a very high sensitivity in compliance with the aimed application. The study of different mechanisms involved in detection was performed

    Cocapture of cognate and bystander antigens can activate autoreactive B cells

    Get PDF
    Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) are associated with autoimmune central nervous system diseases like acute disseminated encephalomyelitis (ADEM). For ADEM, it is speculated that a preceding infection is the trigger of the autoimmune response, but the mechanism connecting the infection to the production of MOG antibodies remains a mystery. We reasoned that the ability of B cells to capture cognate antigen from cell membranes, along with small quantities of coexpressed “bystander” antigens, might enable B-cell escape from tolerance. We tested this hypothesis using influenza hemagglutinin as a model viral antigen and transgenic, MOG-specific B cells. Using flow cytometry and live and fixed cell microscopy, we show that MOG-specific B cells take up large amounts of MOG from cell membranes. Uptake of the antigen from the membrane leads to a strong activation of the capturing B cell. When influenza hemagglutinin is also present in the membrane of the target cell, it can be cocaptured with MOG by MOG-specific B cells via the B-cell receptor. Hemagglutinin and MOG are both presented to T cells, which in turn are activated and proliferate. As a consequence, MOG-specific B cells get help from hemagglutinin-specific T cells to produce anti-MOG antibodies. In vivo, the transfer of MOG-specific B cells into recipient mice after the cocapture of MOG and hemagglutinin leads to the production of class-switched anti-MOG antibodies, dependent on the presence of hemagglutinin-specific T cells. This mechanism offers a link between infection and autoimmunity. Keywords: tolerance; autoantibodies; antigen capture; antigen presentation; influenz

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    Attainment of Brown Adipocyte Features in White Adipocytes of Hormone-Sensitive Lipase Null Mice

    Get PDF
    BACKGROUND: Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored tri- and diglycerides, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: Following a high-fat diet (HFD) regimen, energy expenditure, measured using indirect calorimetry, was increased in HSL null mice. White adipose tissue of HSL null mice was characterized by reduced mass and reduced protein expression of PPARgamma, a key transcription factor in adipogenesis, and stearoyl-CoA desaturase 1, the expression of which is known to be positively correlated to the differentiation state of the adipocyte. The protein expression of uncoupling protein-1 (UCP-1), the highly specific marker of brown adipocytes, was increased 7-fold in white adipose tissue of HSL null mice compared to wildtype littermates. Transmission electron microscopy revealed an increase in the size of mitochondria of white adipocytes of HSL null mice. The mRNA expression of pRb and RIP140 was decreased in isolated white adipocytes, while the expression of UCP-1 and CPT1 was increased in HSL null mice compared to wildtype littermates. Basal oxygen consumption was increased almost 3-fold in white adipose tissue of HSL null mice and was accompanied by increased uncoupling activity. CONCLUSIONS: These data suggest that HSL is involved in the determination of white versus brown adipocytes during adipocyte differentiation The exact mechanism(s) underlying this novel role of HSL remains to be elucidated, but it seems clear that HSL is required to sustain normal expression levels of pRb and RIP140, which both promote differentiation into the white, rather than the brown, adipocyte lineage

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    Antibody Evasion by a Gammaherpesvirus O-Glycan Shield

    Get PDF
    All gammaherpesviruses encode a major glycoprotein homologous to the Epstein-Barr virus gp350. These glycoproteins are often involved in cell binding, and some provide neutralization targets. However, the capacity of gammaherpesviruses for long-term transmission from immune hosts implies that in vivo neutralization is incomplete. In this study, we used Bovine Herpesvirus 4 (BoHV-4) to determine how its gp350 homolog - gp180 - contributes to virus replication and neutralization. A lack of gp180 had no impact on the establishment and maintenance of BoHV-4 latency, but markedly sensitized virions to neutralization by immune sera. Antibody had greater access to gB, gH and gL on gp180-deficient virions, including neutralization epitopes. Gp180 appears to be highly O-glycosylated, and removing O-linked glycans from virions also sensitized them to neutralization. It therefore appeared that gp180 provides part of a glycan shield for otherwise vulnerable viral epitopes. Interestingly, this O-glycan shield could be exploited for neutralization by lectins and carbohydrate-specific antibody. The conservation of O-glycosylation sites in all gp350 homologs suggests that this is a general evasion mechanism that may also provide a therapeutic target

    Germ Cell-Specific Targeting of DICER or DGCR8 Reveals a Novel Role for Endo-siRNAs in the Progression of Mammalian Spermatogenesis and Male Fertility

    Get PDF
    Small non-coding RNAs act as critical regulators of gene expression and are essential for male germ cell development and spermatogenesis. Previously, we showed that germ cell-specific inactivation of Dicer1, an endonuclease essential for the biogenesis of micro-RNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), led to complete male infertility due to alterations in meiotic progression, increased spermatocyte apoptosis and defects in the maturation of spermatozoa. To dissect the distinct physiological roles of miRNAs and endo-siRNAs in spermatogenesis, we compared the testicular phenotype of mice with Dicer1 or Dgcr8 depletion in male germ cells. Dgcr8 mutant mice, which have a defective miRNA pathway while retaining an intact endo-siRNA pathway, were also infertile and displayed similar defects, although less severe, to Dicer1 mutant mice. These included cumulative defects in meiotic and haploid phases of spermatogenesis, resulting in oligo-, terato-, and azoospermia. In addition, we found by RNA sequencing of purified spermatocytes that inactivation of Dicer1 and the resulting absence of miRNAs affected the fine tuning of protein-coding gene expression by increasing low level gene expression. Overall, these results emphasize the essential role of miRNAs in the progression of spermatogenesis, but also indicate a role for endo-siRNAs in this process

    Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome

    Get PDF
    Background: Genomics enables individualized diagnosis and treatment, but large challenges remain to functionally interpret rare variants. To date, only one causative variant has been described for KCNK9 imprinting syndrome (KIS). The genotypic and phenotypic spectrum of KIS has yet to be described and the precise mechanism of disease fully understood. Methods: This study discovers mechanisms underlying KCNK9 imprinting syndrome (KIS) by describing 15 novel KCNK9 alterations from 47 KIS-affected individuals. We use clinical genetics and computer-assisted facial phenotyping to describe the phenotypic spectrum of KIS. We then interrogate the functional effects of the variants in the encoded TASK3 channel using sequence-based analysis, 3D molecular mechanic and dynamic protein modeling, and in vitro electrophysiological and functional methodologies. Results: We describe the broader genetic and phenotypic variability for KIS in a cohort of individuals identifying an additional mutational hotspot at p.Arg131 and demonstrating the common features of this neurodevelopmental disorder to include motor and speech delay, intellectual disability, early feeding difficulties, muscular hypotonia, behavioral abnormalities, and dysmorphic features. The computational protein modeling and in vitro electrophysiological studies discover variability of the impact of KCNK9 variants on TASK3 channel function identifying variants causing gain and others causing loss of conductance. The most consistent functional impact of KCNK9 genetic variants, however, was altered channel regulation. Conclusions: This study extends our understanding of KIS mechanisms demonstrating its complex etiology including gain and loss of channel function and consistent loss of channel regulation. These data are rapidly applicable to diagnostic strategies, as KIS is not identifiable from clinical features alone and thus should be molecularly diagnosed. Furthermore, our data suggests unique therapeutic strategies may be needed to address the specific functional consequences of KCNK9 variation on channel function and regulation

    A Family Systems Perspective on Attachment Security and Dependency to Mother and Father in Preschool: Differential and Reciprocal Effects on Children’s Emotional and Behavioral Problems

    Get PDF
    Attachment security and dependency play a decisive role for children’s mental health. From a family systems perspective, reciprocal effects of dyadic attachment to each parent within the same family on child symptomatology may well offer additional insights in developmental processes as parents and children influence each other consistently. This study examined the influence of child-mother as well as child–father attachment security and dependency on maternal, paternal, and observed ratings of children’s emotional and behavioral problems. A total of 124 families with preschool children participated in this study. Attachment security, dependency, and symptomatology of the children were independently observed during home visits. Furthermore, mothers and fathers rated child symptoms. Results revealed promotive effects of attachment security to both parents on observed child symptoms. Furthermore, we found a significant actor effect of child-mother attachment security, as well as a significant partner effect of child–father dependency on maternal ratings of child symptomatology. Attachment security to both parents is promotive for child mental health. The family systems perspective clarifies the meaning of child–father relationships for maternal perception of the own child
    • 

    corecore