193 research outputs found

    Virtual screening of potential bioactive substances using the support vector machine approach

    Get PDF
    Die vorliegende Dissertation stellt eine kumulative Arbeit dar, die in insgesamt acht wissenschaftlichen Publikationen (fünf publiziert, zwei eingerichtet und eine in Vorbereitung) dargelegt ist. In diesem Forschungsprojekt wurden Anwendungen von maschinellem Lernen für das virtuelle Screening von Moleküldatenbanken durchgeführt. Das Ziel war primär die Einführung und Überprüfung des Support-Vector-Machine (SVM) Ansatzes für das virtuelle Screening nach potentiellen Wirkstoffkandidaten. In der Einleitung der Arbeit ist die Rolle des virtuellen Screenings im Wirkstoffdesign beschrieben. Methoden des virtuellen Screenings können fast in jedem Bereich der gesamten pharmazeutischen Forschung angewendet werden. Maschinelles Lernen kann einen Einsatz finden von der Auswahl der ersten Moleküle, der Optimierung der Leitstrukturen bis hin zur Vorhersage von ADMET (Absorption, Distribution, Metabolism, Toxicity) Eigenschaften. In Abschnitt 4.2 werden möglichen Verfahren dargestellt, die zur Beschreibung von chemischen Strukturen eingesetzt werden können, um diese Strukturen in ein Format zu bringen (Deskriptoren), das man als Eingabe für maschinelle Lernverfahren wie Neuronale Netze oder SVM nutzen kann. Der Fokus ist dabei auf diejenigen Verfahren gerichtet, die in der vorliegenden Arbeit verwendet wurden. Die meisten Methoden berechnen Deskriptoren, die nur auf der zweidimensionalen (2D) Struktur basieren. Standard-Beispiele hierfür sind physikochemische Eigenschaften, Atom- und Bindungsanzahl etc. (Abschnitt 4.2.1). CATS Deskriptoren, ein topologisches Pharmakophorkonzept, sind ebenfalls 2D-basiert (Abschnitt 4.2.2). Ein anderer Typ von Deskriptoren beschreibt Eigenschaften, die aus einem dreidimensionalen (3D) Molekülmodell abgeleitet werden. Der Erfolg dieser Beschreibung hangt sehr stark davon ab, wie repräsentativ die 3D-Konformation ist, die für die Berechnung des Deskriptors angewendet wurde. Eine weitere Beschreibung, die wir in unserer Arbeit eingesetzt haben, waren Fingerprints. In unserem Fall waren die verwendeten Fingerprints ungeeignet zum Trainieren von Neuronale Netzen, da der Fingerprintvektor zu viele Dimensionen (~ 10 hoch 5) hatte. Im Gegensatz dazu hat das Training von SVM mit Fingerprints funktioniert. SVM hat den Vorteil im Vergleich zu anderen Methoden, dass sie in sehr hochdimensionalen Räumen gut klassifizieren kann. Dieser Zusammenhang zwischen SVM und Fingerprints war eine Neuheit, und wurde von uns erstmalig in die Chemieinformatik eingeführt. In Abschnitt 4.3 fokussiere ich mich auf die SVM-Methode. Für fast alle Klassifikationsaufgaben in dieser Arbeit wurde der SVM-Ansatz verwendet. Ein Schwerpunkt der Dissertation lag auf der SVM-Methode. Wegen Platzbeschränkungen wurde in den beigefügten Veröffentlichungen auf eine detaillierte Beschreibung der SVM verzichtet. Aus diesem Grund wird in Abschnitt 4.3 eine vollständige Einführung in SVM gegeben. Darin enthalten ist eine vollständige Diskussion der SVM Theorie: optimale Hyperfläche, Soft-Margin-Hyperfläche, quadratische Programmierung als Technik, um diese optimale Hyperfläche zu finden. Abschnitt 4.3 enthält auch eine Diskussion von Kernel-Funktionen, welche die genaue Form der optimalen Hyperfläche bestimmen. In Abschnitt 4.4 ist eine Einleitung in verschiede Methoden gegeben, die wir für die Auswahl von Deskriptoren genutzt haben. In diesem Abschnitt wird der Unterschied zwischen einer „Filter“- und der „Wrapper“-basierten Auswahl von Deskriptoren herausgearbeitet. In Veröffentlichung 3 (Abschnitt 7.3) haben wir die Vorteile und Nachteile von Filter- und Wrapper-basierten Methoden im virtuellen Screening vergleichend dargestellt. Abschnitt 7 besteht aus den Publikationen, die unsere Forschungsergebnisse enthalten. Unsere erste Publikation (Veröffentlichung 1) war ein Übersichtsartikel (Abschnitt 7.1). In diesem Artikel haben wir einen Gesamtüberblick der Anwendungen von SVM in der Bio- und Chemieinformatik gegeben. Wir diskutieren Anwendungen von SVM für die Gen-Chip-Analyse, die DNASequenzanalyse und die Vorhersage von Proteinstrukturen und Proteininteraktionen. Wir haben auch Beispiele beschrieben, wo SVM für die Vorhersage der Lokalisation von Proteinen in der Zelle genutzt wurden. Es wird dabei deutlich, dass SVM im Bereich des virtuellen Screenings noch nicht verbreitet war. Um den Einsatz von SVM als Hauptmethode unserer Forschung zu begründen, haben wir in unserer nächsten Publikation (Veröffentlichung 2) (Abschnitt 7.2) einen detaillierten Vergleich zwischen SVM und verschiedenen neuronalen Netzen, die sich als eine Standardmethode im virtuellen Screening etabliert haben, durchgeführt. Verglichen wurde die Trennung von wirstoffartigen und nicht-wirkstoffartigen Molekülen („Druglikeness“-Vorhersage). Die SVM konnte 82% aller Moleküle richtig klassifizieren. Die Klassifizierung war zudem robuster als mit dreilagigen feedforward-ANN bei der Verwendung verschiedener Anzahlen an Hidden-Neuronen. In diesem Projekt haben wir verschiedene Deskriptoren zur Beschreibung der Moleküle berechnet: Ghose-Crippen Fragmentdeskriptoren [86], physikochemische Eigenschaften [9] und topologische Pharmacophore (CATS) [10]. Die Entwicklung von weiteren Verfahren, die auf dem SVM-Konzept aufbauen, haben wir in den Publikationen in den Abschnitten 7.3 und 7.8 beschrieben. Veröffentlichung 3 stellt die Entwicklung einer neuen SVM-basierten Methode zur Auswahl von relevanten Deskriptoren für eine bestimmte Aktivität dar. Eingesetzt wurden die gleichen Deskriptoren wie in dem oben beschriebenen Projekt. Als charakteristische Molekülgruppen haben wir verschiedene Untermengen der COBRA Datenbank ausgewählt: 195 Thrombin Inhibitoren, 226 Kinase Inhibitoren und 227 Faktor Xa Inhibitoren. Es ist uns gelungen, die Anzahl der Deskriptoren von ursprünglich 407 auf ungefähr 50 zu verringern ohne signifikant an Klassifizierungsgenauigkeit zu verlieren. Unsere Methode haben wir mit einer Standardmethode für diese Anwendung verglichen, der Kolmogorov-Smirnov Statistik. Die SVM-basierte Methode erwies sich hierbei in jedem betrachteten Fall als besser als die Vergleichsmethoden hinsichtlich der Vorhersagegenauigkeit bei der gleichen Anzahl an Deskriptoren. Eine ausführliche Beschreibung ist in Abschnitt 4.4 gegeben. Dort sind auch verschiedene „Wrapper“ für die Deskriptoren-Auswahl beschrieben. Veröffentlichung 8 beschreibt die Anwendung von aktivem Lernen mit SVM. Die Idee des aktiven Lernens liegt in der Auswahl von Molekülen für das Lernverfahren aus dem Bereich an der Grenze der verschiedenen zu unterscheidenden Molekülklassen. Auf diese Weise kann die lokale Klassifikation verbessert werden. Die folgenden Gruppen von Moleküle wurden genutzt: ACE (Angiotensin converting enzyme), COX2 (Cyclooxygenase 2), CRF (Corticotropin releasing factor) Antagonisten, DPP (Dipeptidylpeptidase) IV, HIV (Human immunodeficiency virus) protease, Nuclear Receptors, NK (Neurokinin receptors), PPAR (peroxisome proliferator-activated receptor), Thrombin, GPCR und Matrix Metalloproteinasen. Aktives Lernen konnte die Leistungsfähigkeit des virtuellen Screenings verbessern, wie sich in dieser retrospektiven Studie zeigte. Es bleibt abzuwarten, ob sich das Verfahren durchsetzen wird, denn trotzt des Gewinns an Vorhersagegenauigkeit ist es aufgrund des mehrfachen SVMTrainings aufwändig. Die Publikationen aus den Abschnitten 7.5, 7.6 und 7.7 (Veröffentlichungen 5-7) zeigen praktische Anwendungen unserer SVM-Methoden im Wirkstoffdesign in Kombination mit anderen Verfahren, wie der Ähnlichkeitssuche und neuronalen Netzen zur Eigenschaftsvorhersage. In zwei Fällen haben wir mit dem Verfahren neuartige Liganden für COX-2 (cyclooxygenase 2) und dopamine D3/D2 Rezeptoren gefunden. Wir konnten somit klar zeigen, dass SVM-Methoden für das virtuelle Screening von Substanzdatensammlungen sinnvoll eingesetzt werden können. Es wurde im Rahmen der Arbeit auch ein schnelles Verfahren zur Erzeugung großer kombinatorischer Molekülbibliotheken entwickelt, welches auf der SMILES Notation aufbaut. Im frühen Stadium des Wirstoffdesigns ist es wichtig, eine möglichst „diverse“ Gruppe von Molekülen zu testen. Es gibt verschiedene etablierte Methoden, die eine solche Untermenge auswählen können. Wir haben eine neue Methode entwickelt, die genauer als die bekannte MaxMin-Methode sein sollte. Als erster Schritt wurde die „Probability Density Estimation“ (PDE) für die verfügbaren Moleküle berechnet. [78] Dafür haben wir jedes Molekül mit Deskriptoren beschrieben und die PDE im N-dimensionalen Deskriptorraum berechnet. Die Moleküle wurde mit dem Metropolis Algorithmus ausgewählt. [87] Die Idee liegt darin, wenige Moleküle aus den Bereichen mit hoher Dichte auszuwählen und mehr Moleküle aus den Bereichen mit niedriger Dichte. Die erhaltenen Ergebnisse wiesen jedoch auf zwei Nachteile hin. Erstens wurden Moleküle mit unrealistischen Deskriptorwerten ausgewählt und zweitens war unser Algorithmus zu langsam. Dieser Aspekt der Arbeit wurde daher nicht weiter verfolgt. In Veröffentlichung 6 (Abschnitt 7.6) haben wir in Zusammenarbeit mit der Molecular-Modeling Gruppe von Aventis-Pharma Deutschland (Frankfurt) einen SVM-basierten ADME Filter zur Früherkennung von CYP 2C9 Liganden entwickelt. Dieser nichtlineare SVM-Filter erreichte eine signifikant höhere Vorhersagegenauigkeit (q2 = 0.48) als ein auf den gleichen Daten entwickelten PLS-Modell (q2 = 0.34). Es wurden hierbei Dreipunkt-Pharmakophordeskriptoren eingesetzt, die auf einem dreidimensionalen Molekülmodell aufbauen. Eines der wichtigen Probleme im computerbasierten Wirkstoffdesign ist die Auswahl einer geeigneten Konformation für ein Molekül. Wir haben versucht, SVM auf dieses Problem anzuwenden. Der Trainingdatensatz wurde dazu mit jeweils mehreren Konformationen pro Molekül angereichert und ein SVM Modell gerechnet. Es wurden anschließend die Konformationen mit den am schlechtesten vorhergesagten IC50 Wert aussortiert. Die verbliebenen gemäß dem SVM-Modell bevorzugten Konformationen waren jedoch unrealistisch. Dieses Ergebnis zeigt Grenzen des SVM-Ansatzes auf. Wir glauben jedoch, dass weitere Forschung auf diesem Gebiet zu besseren Ergebnissen führen kann

    Mean-Field Theory of Meta-Learning

    Full text link
    We discuss here the mean-field theory for a cellular automata model of meta-learning. The meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents, that acquire and process incoming information using various types, or different versions of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share opposite classification outcome can be observed in the system. Therefore, the probability of selecting proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are build from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents.Comment: 23 page

    SuperPred: drug classification and target prediction

    Get PDF
    The drug classification scheme of the World Health Organization (WHO) [Anatomical Therapeutic Chemical (ATC)-code] connects chemical classification and therapeutic approach. It is generally accepted that compounds with similar physicochemical properties exhibit similar biological activity. If this hypothesis holds true for drugs, then the ATC-code, the putative medical indication area and potentially the medical target should be predictable on the basis of structural similarity. We have validated that the prediction of the drug class is reliable for WHO-classified drugs. The reliability of the predicted medical effects of the compounds increases with a rising number of (physico-) chemical properties similar to a drug with known function. The web-server translates a user-defined molecule into a structural fingerprint that is compared to about 6300 drugs, which are enriched by 7300 links to molecular targets of the drugs, derived through text mining followed by manual curation. Links to the affected pathways are provided. The similarity to the medical compounds is expressed by the Tanimoto coefficient that gives the structural similarity of two compounds. A similarity score higher than 0.85 results in correct ATC prediction for 81% of all cases. As the biological effect is well predictable, if the structural similarity is sufficient, the web-server allows prognoses about the medical indication area of novel compounds and to find new leads for known targets

    Does distance matter? Variations in alternative 3′ splicing regulation

    Get PDF
    Alternative splicing constitutes a major mechanism creating protein diversity in humans. This diversity can result from the alternative skipping of entire exons or by alternative selection of the 5′ or 3′ splice sites that define the exon boundaries. In this study, we analyze the sequence and evolutionary characteristics of alternative 3′ splice sites conserved between human and mouse genomes for distances ranging from 3 to 100 nucleotides. We show that alternative splicing events can be distinguished from constitutive splicing by a combination of properties which vary depending on the distance between the splice sites. Among the unique features of alternative 3′ splice sites, we observed an unexpectedly high occurrence of events in which a polypyrimidine tract was found to overlap the upstream splice site. By applying a machine-learning approach, we show that we can successfully discriminate true alternative 3′ splice sites from constitutive 3′ splice sites. Finally, we propose that the unique features of the intron flanking alternative splice sites are indicative of a regulatory mechanism that is involved in splice site selection. We postulate that the process of splice site selection is influenced by the distance between the competitive splice sites

    Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network

    Get PDF
    OBJECTIVE: The purpose of the current study was to develop support vector machine (SVM) and artificial neural network (ANN) models for the pre-operative prediction of advanced prostate cancer by using the parameters acquired from transrectal ultrasound (TRUS)-guided prostate biopsies, and to compare the accuracies between the two models. MATERIALS AND METHODS: Five hundred thirty-two consecutive patients who underwent prostate biopsies and prostatectomies for prostate cancer were divided into the training and test groups (n = 300 versus n = 232). From the data in the training group, two clinical decision support systems (CDSSs-[SVM and ANN]) were constructed with input (age, prostate specific antigen level, digital rectal examination, and five biopsy parameters) and output data (the probability for advanced prostate cancer [> pT3a]). From the data of the test group, the accuracy of output data was evaluated. The areas under the receiver operating characteristic (ROC) curve (AUC) were calculated to summarize the overall performances, and a comparison of the ROC curves was performed (p < 0.05). RESULTS: The AUC of SVM and ANN is 0.805 and 0.719, respectively (p = 0.020), in the pre-operative prediction of advanced prostate cancer. CONCLUSION: The performance of SVM is superior to ANN in the pre-operative prediction of advanced prostate cancer.ope

    Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies

    Get PDF
    Background: Several models for mortality prediction have been constructed for critically ill patients with haematological malignancies in recent years. These models have proven to be equally or more accurate in predicting hospital mortality in patients with haematological malignancies than ICU severity of illness scores such as the APACHE II or SAPS II [1]. The objective of this study is to compare the accuracy of predicting hospital mortality in patients with haematological malignancies admitted to the ICU between models based on multiple logistic regression (MLR) and support vector machine (SVM) based models. Methods: 352 patients with haematological malignancies admitted to the ICU between 1997 and 2006 for a life-threatening complication were included. 252 patient records were used for training of the models and 100 were used for validation. In a first model 12 input variables were included for comparison between MLR and SVM. In a second more complex model 17 input variables were used. MLR and SVM analysis were performed independently from each other. Discrimination was evaluated using the area under the receiver operating characteristic (ROC) curves (+/- SE). Results: The area under ROC curve for the MLR and SVM in the validation data set were 0.768 (+/- 0.04) vs. 0.802 (+/- 0.04) in the first model (p = 0.19) and 0.781 (+/- 0.05) vs. 0.808 (+/- 0.04) in the second more complex model (p = 0.44). SVM needed only 4 variables to make its prediction in both models, whereas MLR needed 7 and 8 variables in the first and second model respectively. Conclusion: The discriminative power of both the MLR and SVM models was good. No statistically significant differences were found in discriminative power between MLR and SVM for prediction of hospital mortality in critically ill patients with haematological malignancies

    Support vector machine model for diagnosis of lymph node metastasis in gastric cancer with multidetector computed tomography: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymph node metastasis (LNM) of gastric cancer is an important prognostic factor regarding long-term survival. But several imaging techniques which are commonly used in stomach cannot satisfactorily assess the gastric cancer lymph node status. They can not achieve both high sensitivity and specificity. As a kind of machine-learning methods, Support Vector Machine has the potential to solve this complex issue.</p> <p>Methods</p> <p>The institutional review board approved this retrospective study. 175 consecutive patients with gastric cancer who underwent MDCT before surgery were included. We evaluated the tumor and lymph node indicators on CT images including serosal invasion, tumor classification, tumor maximum diameter, number of lymph nodes, maximum lymph node size and lymph nodes station, which reflected the biological behavior of gastric cancer. Univariate analysis was used to analyze the relationship between the six image indicators with LNM. A SVM model was built with these indicators above as input index. The output index was that lymph node metastasis of the patient was positive or negative. It was confirmed by the surgery and histopathology. A standard machine-learning technique called k-fold cross-validation (5-fold in our study) was used to train and test SVM models. We evaluated the diagnostic capability of the SVM models in lymph node metastasis with the receiver operating characteristic (ROC) curves. And the radiologist classified the lymph node metastasis of patients by using maximum lymph node size on CT images as criterion. We compared the areas under ROC curves (AUC) of the radiologist and SVM models.</p> <p>Results</p> <p>In 175 cases, the cases of lymph node metastasis were 134 and 41 cases were not. The six image indicators all had statistically significant differences between the LNM negative and positive groups. The means of the sensitivity, specificity and AUC of SVM models with 5-fold cross-validation were 88.5%, 78.5% and 0.876, respectively. While the diagnostic power of the radiologist classifying lymph node metastasis by maximum lymph node size were only 63.4%, 75.6% and 0.757. Each SVM model of the 5-fold cross-validation performed significantly better than the radiologist.</p> <p>Conclusions</p> <p>Based on biological behavior information of gastric cancer on MDCT images, SVM model can help diagnose the lymph node metastasis preoperatively.</p

    Prediction of potential drug targets based on simple sequence properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets.</p> <p>Results</p> <p>Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research.</p> <p>Conclusion</p> <p>We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.</p
    corecore