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Abstract

iSeeRNA is also provided for small size dataset.

offering a valuable tool for lincRNA study.

Background: Long intergenic non-coding RNAs (lincRNAs) are emerging as a novel class of non-coding RNAs and
potent gene regulators. High-throughput RNA-sequencing combined with de novo assembly promises quantity
discovery of novel transcripts. However, the identification of lincRNAs from thousands of assembled transcripts is
still challenging due to the difficulties of separating them from protein coding transcripts (PCTs).

Results: We have implemented iSeeRNA, a support vector machine (SVM)-based classifier for the identification of
lincRNAs. iSeeRNA shows better performance compared to other software. A public available webserver for

Conclusions: iSeeRNA demonstrates high prediction accuracy and runs several magnitudes faster than other
similar programs. It can be integrated into the transcriptome data analysis pipelines or run as a web server, thus

Background

Over the past decade, evidence from numerous high-
throughput genomic platforms reveals that even though
less than 2% of the mammalian genome encodes proteins,
a significant fraction can be transcribed into different
complex families of non-coding RNAs (ncRNAs) [1-4].
Other than microRNAs and other families of small non-
coding RNAs, long non-coding RNAs (IncRNAs, >200nt)
are emerging as potent regulators of gene expression [5].
Originally identified by Guttman et al. [6] from four
mouse cell types using chromatin state maps as a subtype
of IncRNAs, long intergenic non-coding RNAs (lincRNAs),
are discrete transcriptional unit intervening known pro-
tein-coding loci. Recent studies demonstrate the functional
significance of lincRNAs. However, it remains a daunting
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task to identify all the lincRNAs existent in various biolo-
gical processes and systems.

Whole transcriptome sequencing, known as RNA-Seq,
offers the promise of rapid comprehensive discovery of
novel genes and transcripts [7]. With the de novo assembly
software such as Cufflinks [8] and Scripture [6], a large set
of novel assemblies can be obtained from RNA-Seq data.
Several programs have been used to facilitate the catalo-
ging of lincRNAs from RNA-Seq assemblies. For example,
Li et al. [9] used Codon Substitution Frequency (CSF)
score [10] to identify lincRNAs from de novo assembled
transcripts in chicken skeletal muscle. Pauli et al. [11] took
advantage of PhyloCSF score [12] followed by other filter-
ing steps to identify lincRNAs expressed during zebrafish
embryogenesis. Cabili et al. [13] also used PhyloCSF pro-
gram to eliminate the de novo assembled transcripts with
positive coding potential and identified ~8200 lincRNA
loci in 24 human tissues. However, the extremely high
computational times demanded by PhyloCSF, may become
the bottleneck for handling millions of assemblies gener-
ated from high throughput sequencing. Furthermore,
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neither CSF nor PhyloCSF provides publicly available tools
that can be readily integrated into the lincRNA identifica-
tion workflow. Therefore, ab initio reconstruction of a
reliable set of lincRNAs through computational method
remains a daunting task. There is an urgent need for such
a standalone tool to accurately and quickly distinguish
lincRNAs from extremely large dataset. Previous studies
showed that supervised machine learning method, espe-
cially Support Vector Machine (SVM), may represent a
potential solution for accurate identification of lincRNAs
and protein coding gene transcripts (PCTs). For example,
CONC (Coding Or Non-Coding) [14], CPC (Coding
Potential Calculator) [15], and POTRAIT [16] have been
developed to discriminate PCTs and ncRNAs in general.
However, the performance of these programs is largely
dependent on datasets; for instance, CONC is slow on
analyzing large datasets [15], which may limit its useful-
ness in the transcriptome data analysis. CPC works well
with known PCTs but may tend to classify novel PCTs
into lincRNAs if they have not been recorded in the pro-
tein databases used by CPC [15]. PORTAIT was specifi-
cally designed for the neglected species such as fungus et
al. [16]. Moreover, their performance on the identification
of lincRNAs has not been evaluated.

In this study, we present a new SVM-based classifier and
a standalone tool, iSeeRNA. It demonstrated high accu-
racy, balanced sensitivity and specificity for both lincRNA
and PCT datasets. It also outperforms others by running
several order-of-magnitudes faster, thus representing an
ideal tool for lincRNA identification from transcriptome
sequencing data.

Methods

Standard input file formats

To be compatible with de novo assembly software, such as
Cufflinks and Scripture, which use GTF/GFF or BED file
format, we set these three formats as default input file for-
mats for iSeeRNA. This will allow easy integration of
iSeeRNA into the transcriptome data analysis workflow.
The detailed information about the file formats can be
found at UCSC genome browser (http://genome.ucsc.edu/
FAQ/FAQformat.html).

SVM settings

In order to build SVM models for iSeeRNA, we used
LIBSVM (version 3.11) implementation [17] with Radial
Basis Functional kernel which was shown to be the best
kernel to deal with this task [15]. During the training,
SVM was set as binary classifier with the two classes being
lincRNAs (positive set) and PCTs (negative set). Opti-
mized SVM parameters C and gamma were obtained by
using the accompanying grid.py script with 5,000 ran-
domly selected instances from the training dataset. To
obtain the best performance model, 10-fold cross-
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validation was used. In addition, two models were trained
and tested separately using species specific datasets for
human and mouse, respectively.

PhyloCSF and CPC settings

iSeeRNA was benchmarked against two other classifica-
tion programs: PhyloCSF and CPC. These two programs
were installed locally and executed with default para-
meters. For PhyloCSF, a score of 0 was used as the classifi-
cation parameter. For CPC, Uniref90 [18] was employed as
protein database and the default classification model
developed by its authors was used.

Performance measurements
To evaluate the performance, accuracy (sensitivity or
specificity) and Matthews Correlation Coefficient (MCC)
[19], an indicator used in machine learning as a measure
of the quality of binary (two-class) classification, were
calculated; and Receiver Operating Characteristic (ROC)
curves were generated.

The following equations were used for calculating sen-
sitivity and specificity:

L TP
Sensitivity = (1)
TP + EN
TN
Specificity = 2
pecificity N + EP ()

TP*TN — FP*FN

Mee = V(TP + FP)(TP + FN)(TN + FP)(TN + FN) ®)

Where TP, FP, TN and FN are the numbers of true
positives (lincRNAs predicted to be non-coding), false
positives (PCTs predicted to be non-coding), true nega-
tives (PCTs predicted to be coding) and false negatives
(lincRNAs predicted to be coding).

Results

Gold-standard datasets

The quality of the training data is ultra-important for
building an accurate SVM model. In order to obtain a
pool of high quality lincRNAs and PCTs as Gold-stan-
dard datasets (Figure 1), we collected lincRNAs and
PCTs annotated either as “known” or “novel” from
Human and Vertebrate Analysis and Annotation
(HAVANA) (http://vega.sanger.ac.uk/index.html) [20]
project. These lincRNA annotations were manually
curated and supported by some experimental evidences
such as spliced cDNAs and ESTs et al.,, thus providing an
ideal source for lincRNAs. We further filtered the data
with the transcript length (> 200 nt). Next, for lincRNAs,
we eliminated those transcripts that were annotated as
PCTs by RefSeq [21]; similarly, for PCTs, we only kept
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Positive Dataset Negative Dataset

HAVANA lincRNAs HAVANA PCTs
H : 5499 H: 63125

M : 959 M : 99843

Length >= 200
RefSeq annotation

Gold-standard Dataset
H : 5079 lincRNAs and 24960 PCTs
M : 889 lincRNAs and 15121 PCTs

split data

Training Testing
dataset dataset

SVM training

[ SVM model

SVM prediction

\%
[ Performance evaluation ]

Figure 1 Datasets and workflow of iSeeRNA. Annotated lincRNAs (positive dataset) and PCTs (negative dataset) were collected from HAVANA
project (H, human; M, mouse). After filtering through transcript length and RefSeq annotations, Gold-standard datasets were obtained and
further split into training and testing datasets, which were then used for performance evaluation.

those transcripts that have consistent annotations in both  human, including 5,079 lincRNAs and 24,960 PCTs.
HAVANA and RefSeq. As a result, we created a Gold- A total of 16,010 transcripts were collected for mouse,
standard dataset with a total of 30,039 transcripts for  including 889 lincRNAs and 15,121 PCTs. In order to
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generate the training and testing datasets from this Gold-
standard dataset, we randomly selected half of the lincR-
NAs and roughly equal number of PCTs to form a
balanced training dataset. We therefore obtained a train-
ing dataset with 2,594 lincRNAs and 2,583 PCTs for
human, and a second one with 424 lincRNAs and 465
PCTs for mouse (Figure 1). The remaining lincRNAs and
PCTs in Gold-standard dataset were combined to form
two testing datasets for human and mouse separately.

Feature selection

Selecting appropriate features is one of the most critical
steps to build a SVM classifier. Many features have been
used in distinguishing ncRNAs from PCTs. These can
be classified to three categories: conservation, Open
Reading Frame (ORF) and nucleotide sequences-based
[12,14-16,22-25]. We employed those features that have
demonstrated good potential to differentiate PCTs from
ncRNAs in general considering lincRNAs share some
common sequence properties with other classes of
ncRNAs. As a result, a total of 10 features in three cate-
gories were used to build our SVM models. The first
class of feature is conservation. Many studies have
demonstrated that lincRNAs are less conserved than
PCTs in general [13], making this a suitable feature for
distinguishing them. To calculate the conservation score,
we first downloaded the base-resolution phastCons [26]
score files from UCSC; the scores of all nucleotides were
then collected and averaged to obtain the conservation
score for each transcript. The homolog search based fea-
tures were among the most popular features for ncRNA
classification but not employed for the following reasons.
First, many novel PCTs are not collected in the protein
database so that they tend to be mis-classifed as ncRNAs;
Second, it showed strong correlation with the conserva-
tion score (Spearman correlation = 0.728, see Additional
file 1), which did not further improve the performance
when conservation is used. Lastly, it is very demanding in
terms of computational time so that it tremendously
reduces the performance of SVM classifier. Two Open
Reading Frame (ORF) related features were selected as
the second class, i.e. ORF length and ORF proportion
defined by the length of an ORF divided by the total
length of the transcript. We reasoned that a true lincRNA
transcript, compared to PCTs, is more likely to have a
low-quality ORF reflected by either a short ORF or a
small proportion. txCdsPredict program from UCSC gen-
ome browser was employed to calculate the ORF for each
transcript; the other seven features constitute the third
class including frequencies of seven di- or tri-nucleotide
sequences (GC, CT, TAG, TGT, ACG and TCG), which
contribute the most to the overall performance. Some
other nucleotide based features were not employed due
to their weak classification ability [16]. We found that all
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the three classes were useful to some extent in distin-
guishing lincRNAs and PCTs when used alone; and exon
conservation score and ORF proportion showed the high-
est discrimination power among all the features. (see
Additional File 2).

Performance evaluation
Using ROC, we first evaluated the performance of
iSeeRNA when using three classes of features indepen-
dently or in combination. As shown in Figure 2, each
class is capable of distinguishing but the combination of
all features led to the best performance. This justified the
need of using all 10 features for building the trained
SVM models for iSeeRNA. During the training, iSeeRNA
presented a 10 cross-validation accuracy of 95.4% and
94.2% on training datasets of human and mouse respec-
tively. When applied the trained models on the testing
datasets, iSeeRNA showed an accuracy of 96.1% (2,387/
2,485) on lincRNAs and 94.7% (21,200/22,377) PCTs for
human testing dataset (Table 1). Similarly, iSeeRNA cor-
rectly predicted 94.2% (438/465) lincRNAs and 92.7%
(13,632/14,702) PCTs for mouse testing dataset (Table 1).
We further evaluated iSeeRNA performance on several
benchmark datasets collected from published studies.
The first dataset is a collection of experimentally vali-
dated functional lincRNAs (28 for human and 11 for
mouse). iISeeRNA successfully identified these transcripts
as lincRNAs with 100% accuracy. We then applied
iSeeRNA on a collection of 8,195 human lincRNAs
identified from de novo assembled transcripts [13],
iSeeRNA correctly predicted 97.3% (7,977/8,195) of
these lincRNAs (data not shown). These results further
demonstrated the high accuracy of iSeeRNA for the
identification of lincRNAs.

Comparison to other methods

Next we compared iSeeRNA performance with PhyloCSF
and CPC. Since the number of well-annotated PCTs is
much higher than that of lincRNAs, in order to have
a fair comparison, we created a balanced comparison
dataset from the Gold-standard dataset collected before
(Figure 1). This dataset includes all 2,485 lincRNAs and
2,432 PCTs selected from the human testing dataset
which did not appear in the training dataset. When
iSeeRNA, CPC, and PhyloCSF were applied on this data-
set, at the default thresholds, iSeeRNA demonstrated the
best overall performance measured by MCC (0.935) fol-
lowed by CPC (0.854) and PhyloCSF (0.770). iSeeRNA
also showed the highest specificity (95.3%) (Table 2).
Additionally, iSeeRNA displayed a better sensitivity
(96.1%) compared to PhyloCSF (82.9%), but lower than
CPC (99.2%) (Table 2). We have to point out that Phy-
loCSF failed to give scores for 34 (1.37%) lincRNAs in the
comparison dataset; thus the calculation of the prediction
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Figure 2 The ROC curves for SVMs trained with different feature classes. The true positive rate (i.e, sensitivity) was plotted against the false
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accuracy and CPU time for PhyloCSF was based on the
remaining 2,452 lincRNAs (Table 2). In addition, we
plotted the distribution of the PhyloCSF scores (Figure 3)

Table 1 Performance evaluation of iSeeRNA on testing
and found that the optimal cutoff to achieve the best per-

datasets
Species Dataset Data size Prediction  Accuracy(%) . . .
v - A By pEee o formance was 95 instead of 0 as in default. At this cutoff,
OMmo >apiens Inc S . . . g
P PhyloCSF displayed a high sensitivity of 97.9% but the
PCTs 22377 21200 94.7 i s .
. specificity was dramatically reduced to 87.1%.
Mus Musculus - lincRNAs 465 438 942 To strengthen the above findings, we generated ROC
curves (Figure 4) and calculated the Area Under the

PCTs 14702 13632 92.7
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Table 2 Evaluation of accuracy and CPU time of iSeeRNA, PhyloCSF, and CPC on comparison dataset
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Dataset Data size Accuracy (%) Running Time®
iSeeRNA cpc® iSeeRNA PhyloCSF¢ CPC
lincRNAs 2485 96.1 829 99.2 19.2s 3270m 278s
PCTs 2432 953 920 85.2 25.7s 13307m 309s

@ PhyloCSF failed to calculate the score for 34 lincRNAs; the accuracy and CPU time were thus calculated based on 2451 lincRNAs.
b Uniref90 was used as the protein database.
€ m, minute; s, second.

4 To save the running time, we split the comparison dataset and ran PhyloCSF on 20 nodes in parallel. The reported CPU time was the sum of the execution

time on all nodes.
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Curve (AUC) which measures the overall performance
of a method under different thresholds. The AUC of
iSeeRNA is above 0.99 indicating an excellent classifier.
Compared to the AUC of CPC (0.98) and PhyloCSF
(0.95), iSeeRNA further demonstrated the best overall
performance with balanced sensitivity and specificity.
To test the efficiency of iSeeRNA, we next recorded the
computational times for these three methods on the com-
parison dataset. Overall, iSeeRNA showed several order-

of-magnitudes faster than PhyloCSF and at least 10 times
faster than CPC (Table 2). This suggests that iSeeRNA is
more suitable for processing large amount of transcripts
from high-throughput transcriptome sequencing data.
This advantage together with accepting GFF/GTE/BED as
input file format makes iSeeRNA an ideal program that
can be smoothly integrated as part of a lincRNA annota-
tion pipeline for high-throughput transcriptome data
analysis.
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Web implementation species, human and mouse. The input file of the iSeeRNA
Next, to facilitate the use of iSeeRNA, we implemented it ~ web server can be in GFF/GTF or BED format. Users can
as a user-friendly web server with free accessibility at  either input their data into the text area of the web server
http://www.myogenesisdb.org/iSeeRNA (Figure 4). The  or upload their input file (Figure 5A). The web server can
current web server provides trained SVM models for two  process thousands of transcripts simultaneously. The

A
Walktnrough
Home Download fvallthiolih
— e Example

Welcome to iSeeRNA WebServer ! nep

Choose species : ® hgi19 O mm9
Choose format : ® GFF/GTF O UCSC BED (12 fields)

Please paste your transcript here | _Fxample

#example for hg19

chr22 lincRNA transcript 31365633 31375380 . + . id NR_002323; gene_id NR_002323; gene_name TUG1
chr22 lincRNA exon 31365634 31367765 . + . transcript_id NR_002323; exon_number 1

chr22 lincRNA exon 31368841 31369587 . + . transcript_id NR_002323; exon_number 2

chr22 lincRNA exon 31371156 31375380 . + . transcript_id NR_002323; exon_number 3

chr8 lincRNA transcript 128025398 128033259 . +. id NR_045262; gene_id NR_045262; gene_name PCAT1
chr8 lincRNA exon 128025399 128026019 . + . transcript_id NR_045262; exon_number 1

chr8 lincRNA exon 128031889 128033259.. + . transcript_id NR_045262; exon_number 2

Run Reset

Or upload a file ( maximum file size allowed = 16MB )

| | Browse ... |

GO iSeeRNA

B . .

i1SeeRNA Prediction Report
Job ID = gf21fvAEvr3lizPS
The following transcript(s) are predicted :

Transcript ID Prediction Noncoding Score

NM_003403 coding 0.0000
NR_002323 noncoding 0.8439
NR_045262 noncoding 0.9938
NM_134268 coding 0.0000

Figure 5 Screenshots of iSeeRNA web server. (A). Job submission page. An example dataset in GTF format is used as input file. (B). iSeeRNA
output page. iSeeRNA reports transcript 1D, prediction result, and a noncoding score.
A\
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outputs include sequence ID, predicted category and a
non-coding score (Figure 5B); the score is highly corre-
lated with prediction accuracy (see Additional file 3), for
example, a 0.95 iSeeRNA non-coding score corresponds
to approximately 95% possibility of the transcript to be
non-coding.

Discussion

In this study, we report a lightweight SVM-based program,
iSeeRNA, designed for computational identification of
lincRNAs from high-throughput transcriptome sequen-
cing data. We have provided not only a standalone pro-
gram that can be integrated into the transcriptome data
analysis pipeline but also a web server for those with lim-
ited bioinformatics support to use it independently. Com-
pared to similar programs, iSeeRNA directly support the
file formats widely used by the RNA-Seq assemblers, and
it also has demonstrated the best performance in terms of
the prediction accuracy for both lincRNAs and PCTs and
the computational time. We think this stems from the fol-
lowing improvements we have made in terms of feature
selection, training dataset used and optimization of the
computational method: (i) iSeeRNA was uniquely trained
in a species-dependent manner. By using species-specific
lincRNA and PCT training datasets, we have built two
separate SVM models for human and mouse respectively.
However, iSeeRNA also allows users to build additional
customized models for the species of their interest with
the increasing number of species-specific lincRNAs dis-
covered at a rapid speed; (ii) iSeeRNA was trained with a
balanced dataset containing approximately equal number
of lincRNAs and PCTs. This has avoided the overfeeding
of protein coding data and potential bias during the per-
formance evaluation thus leading to accurate prediction
with a balanced sensitivity and specificity. (iii) Compared
to CPC, iSeeRNA does not use any homolog based fea-
tures (such as the BLASTX [27] score) derived from
homolog search results. As novel PCTs are likely omitted
in the database, these features showed bias towards lincR-
NAs which may explain why CPC achieved a higher sensi-
tivity but a comparatively lower specificity (Table 2). In
addition, iSeeRNA employed seven sequence based fea-
tures which were not considered by CPC. (iv) Unlike Phy-
loCSF, which is solely based on conservation for
evaluating the coding potential of a transcript, iSeeRNA
integrates multiple features. Our results demonstrated that
PhyloCSF had difficulty in making clear discrimination
between lincRNAs and PCTs. Even at the optimal thresh-
old (95), 12.9% PCTs were wrongly classified as lincRNAs
(Figure 3). However, the classification performance was
clearly improved by integrating more features in iSeeRNA
(Figure 2). Furthermore, PhyloCSF failed to calculate the
scores for some of the HAVANA annotated lincRNA
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transcripts (Table 2), this further limits its application on
lincRNA identification.

Conclusions

In conclusion, we have implemented a highly accurate
and reliable tool, iSeeRNA, for high throughput screen-
ing of lincRNAs from transcriptome sequencing data.
We provided not only a web server for small dataset but
also a standalone program that can be integrated into a
bioinformatics pipeline for complex transcriptome data
analysis. iSeeRNA demonstrates high performance with
high accuracy and balanced sensitivity and specificity for
both lincRNAs and PCTs. This makes it a valuable tool
for lincRNA studies.

Additional material

N
Additional file 1: Details of conservation score and the blastx score
for the comparison dataset.

Additional file 2: Comparison of the potential for each feature on
the discrimination of lincRNAs (red) from PCTs (green). The
calculated feature values were normalized to values between 0 and 1.
Each feature can distinguish lincRNAs from PCTs to some extension. Exon
cons (exon conservation score) and ORF proportion shows the highest
discrimination power among all the features.

Additional file 3: Scatter plot of iSeeRNA the prediction accuracy
and noncoding score.

Authors’ contributions

KS, HW and HS conceived the study, designed and implemented the
software; XC, PJ and XS participated in software design and provided
technical assistance. KS, HW and HS wrote the manuscript. All authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements

Funding: This work was supported by General Research Funds from the
Research Grants Council of Hong Kong, China [CUHK476309, CUHK476310 to
HW, and CUHK473211 to HS]; CUHK direct grant [2041474 to HS, 2041492
and 2041662 to HW]. National Natural Science Foundation of China (No.
61171191) and Natural Science Foundation of Jiangsu Province in China
(BK2010500) to XS.

Declarations

The publication costs for this article were funded by the University Grants
Committee of the Government of the Hong Kong Special Administrative
Region, China, under the General Research Funds (CUHK473211).

This article has been published as part of BMC Genomics Volume 14
Supplement 2, 2013: Selected articles from ISCB-Asia 2012. The full contents
of the supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/14/S2.

Author details

'Li Ka Shing Institute of Health Sciences, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong SAR, China. “Departments of
Chemical Pathology, The Chinese University of Hong Kong, Shatin, New
Territories, Hong Kong SAR, China. *Department of Obstetrics and
Gynaecology, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong SAR, China. *Department of Biomedical Engineering, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, China.


http://www.biomedcentral.com/content/supplementary/1471-2164-14-S2-S7-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-14-S2-S7-S2.png
http://www.biomedcentral.com/content/supplementary/1471-2164-14-S2-S7-S3.pdf
http://www.biomedcentral.com/bmcgenomics/supplements/14/S2
http://www.biomedcentral.com/bmcgenomics/supplements/14/S2

Sun et al. BMC Genomics 2013, 14(Suppl 2):57
http://www.biomedcentral.com/1471-2164/14/S2/S7

Published: 15 February 2013

References

1.

20.

21.

22.

Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R,
Ravasi T, Lenhard B, Wells C, et al: The transcriptional landscape of the
mammalian genome. Science 2005, 309(5740):1559-1563.

Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT,

Stadler PF, Hertel J, Hackermuller J, Hofacker IL, et al: RNA maps reveal
new RNA classes and a possible function for pervasive transcription.
Science 2007, 316(5830):1484-1488.

Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S, Gingeras TR:
Examples of the complex architecture of the human transcriptome
revealed by RACE and high-density tiling arrays. Genome Res 2005,
15(7):987-997.

Timmers HT, Tora L: The spectacular landscape of chromatin and ncRNAs
under the Tico sunlight. EMBO Rep 11(3):147-149.

Mercer TR, Dinger ME, Mattick JS: Long non-coding RNAs: insights into
functions. Nat Rev Genet 2009, 10(3):155-159.

Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L,
Koziol MJ, Gnirke A, Nusbaum C, et al: Ab initio reconstruction of cell
type-specific transcriptomes in mouse reveals the conserved multi-
exonic structure of lincRNAs. Nat Biotechnol 28(5):503-510.

Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 2009, 10(1):57-63.

Roberts A, Pimentel H, Trapnell C, Pachter L: Identification of novel
transcripts in annotated genomes using RNA-Seq. Bioinformatics
27(17):2325-2329.

Li T, Wang S, Wu R, Zhou X, Zhu D, Zhang Y: Identification of long non-
protein coding RNAs in chicken skeletal muscle using next generation
sequencing. Genomics 99(5):292-298.

Lin MF, Carlson JW, Crosby MA, Matthews BB, Yu C, Park S, Wan KH,
Schroeder AJ, Gramates LS, St Pierre SE, et al- Revisiting the protein-coding
gene catalog of Drosophila melanogaster using 12 fly genomes. Genome
Res 2007, 17(12):1823-1836.

Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L,
Sandelin A, Rinn JL, Regev A, et al: Systematic identification of long
noncoding RNAs expressed during zebrafish embryogenesis. Genome Res
22(3):577-591.

Lin MF, Jungreis |, Kellis M: PhyloCSF: a comparative genomics method to
distinguish protein coding and non-coding regions. Bioinformatics 27(13):
i275-282.

Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL:
Integrative annotation of human large intergenic noncoding RNAs
reveals global properties and specific subclasses. Genes Dev
25(18):1915-1927.

Liu J, Gough J, Rost B: Distinguishing protein-coding from non-coding
RNAs through support vector machines. PLoS Genet 2006, 2(4):e29.

Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G: CPC: assess the
protein-coding potential of transcripts using sequence features and
support vector machine. Nucleic Acids Res 2007, , 35 Web Server:
\W345-349.

Arrial RT, Togawa RC, Brigido Mde M: Screening non-coding RNAs in
transcriptomes from neglected species using PORTRAIT: case study of
the pathogenic fungus Paracoccidioides brasiliensis. BVC Bioinformatics
2009, 10:239.

Chang CCLC: Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2011, 2(3):27.

Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef:
comprehensive and non-redundant UniProt reference clusters.
Bioinformatics 2007, 23(10):1282-1288.

Byvatov E, Schneider G: Support vector machine applications in
bioinformatics. App! Bioinformatics 2003, 2(2):67-77.

Wilming LG, Gilbert JG, Howe K, Trevanion S, Hubbard T, Harrow JL: The
vertebrate genome annotation (Vega) database. Nucleic Acids Res 2008, ,
36 Database: D753-760.

Pruitt KD, Tatusova T, Brown GR, Maglott DR: NCBI Reference Sequences
(RefSeq): current status, new features and genome annotation policy.
Nucleic Acids Res , 40 Database: D130-135.

Lu ZJ, Yip KY, Wang G, Shou C, Hillier LW, Khurana E, Agarwal A,

Auerbach R, Rozowsky J, Cheng C, et al: Prediction and characterization of
noncoding RNAs in C. elegans by integrating conservation, secondary

23.

24.

25.

26.

27.

Page 10 of 10

structure, and high-throughput sequencing and array data. Genome Res
21(2):276-285.

Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, Kellis M, Lindblad-Toh K,
Lander ES: Distinguishing protein-coding and noncoding genes in the
human genome. Proc Natl Acad Sci USA 2007, 104(49):19428-19433.

Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L: Genome-wide
computational identification and manual annotation of human long
noncoding RNA genes. RNA 16(8):1478-1487.

Dinger ME, Pang KC, Mercer TR, Mattick JS: Differentiating protein-coding
and noncoding RNA: challenges and ambiguities. PLoS Comput Biol 2008,
4(11):21000176.

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
Clawson H, Spieth J, Hillier LW, Richards S, et al: Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome Res
2005, 15(8):1034-1050.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403-410.

doi:10.1186/1471-2164-14-S2-S7

Cite this article as: Sun et al.. iSeeRNA: identification of long intergenic
non-coding RNA transcripts from transcriptome sequencing data. BMC
Genomics 2013 14(Suppl 2):57.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/16141072?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16141072?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17510325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17510325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15998911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15998911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20154643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20154643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19188922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19188922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21697122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21697122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22374175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22374175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22374175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22110045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22110045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21685081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21685081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21890647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21890647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16683024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16683024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19653905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19653905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19653905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17379688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17379688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22121212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22121212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21177971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21177971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21177971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18040051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18040051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20587619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20587619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20587619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19043537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19043537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16024819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16024819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Standard input file formats
	SVM settings
	PhyloCSF and CPC settings
	Performance measurements

	Results
	Gold-standard datasets
	Feature selection
	Performance evaluation
	Comparison to other methods
	Web implementation

	Discussion
	Conclusions
	Authors’ contributions
	Competing interests
	Acknowledgements
	Declarations
	Author details
	References

