35 research outputs found

    Mathematical Modeling of Radiofrequency Ablation for Varicose Veins

    Get PDF
    We present a three-dimensional mathematical model for the study of radiofrequency ablation (RFA) with blood flow for varicose vein. The model designed to analyze temperature distribution heated by radiofrequency energy and cooled by blood flow includes a cylindrically symmetric blood vessel with a homogeneous vein wall. The simulated blood velocity conditions are U = 0, 1, 2.5, 5, 10, 20, and 40 mm/s. The lower the blood velocity, the higher the temperature in the vein wall and the greater the tissue damage. The region that is influenced by temperature in the case of the stagnant flow occupies approximately 28.5% of the whole geometry, while the region that is influenced by temperature in the case of continuously moving electrode against the flow direction is about 50%. The generated RF energy induces a temperature rise of the blood in the lumen and leads to an occlusion of the blood vessel. The result of the study demonstrated that higher blood velocity led to smaller thermal region and lower ablation efficiency. Since the peak temperature along the venous wall depends on the blood velocity and pullback velocity, the temperature distribution in the model influences ablation efficiency. The vein wall absorbs more energy in the low pullback velocity than in the high one

    MRI traceability of superparamagnetic iron oxide nanoparticle-embedded chitosan microspheres as an embolic material in rabbit uterus

    Get PDF
    PURPOSEWe aimed to compare polyvinyl alcohol (PVA) particles with calibrated superparamagnetic iron oxide (SPIO) nanoparticle-loaded chitosan microspheres in a rabbit model, specifically regarding the relative distribution of embolic agents within the uterus based on magnetic resonance imaging (MRI) and pathological evaluation.METHODSTwelve New Zealand white rabbits underwent uterine artery embolization using either standard PVA particles (45–150 µm or 350–500 µm) or calibrated SPIO-embedded chitosan microspheres (45–150 µm or 300–500 µm). MRI and histopathological findings were compared one week after embolization.RESULTSCalibrated SPIO-loaded chitosan microspheres 45–150 µm in size were detected on T2-weighted images. On histological analysis, calibrated SPIO-embedded chitosan microspheres were found in both myometrium and endometrium, whereas PVA particles were found only in the perimyometrium or extrauterine fat pads. A proportional relationship was noted between the calibrated SPIO-embedded chitosan microsphere size and the size of the occluded artery.CONCLUSIONCalibrated SPIO-embedded chitosan microspheres induced greater segmental arterial occlusion than PVA particles and showed great potential as a new embolic material. SPIO-embedded chitosan microspheres can be used to follow distribution of embolic particles through MRI studies

    A long-term outcome of therapeutic angiogenesis by transplantation of peripheral blood stem cells in critical limb ischemia after interventional revascularization

    Get PDF
    A 61-year-old male patient with atherosclerotic critical limb ischemia in the left leg underwent stent insertion into the left superficial femoral artery. Stenting procedures improved Rutherford grade from III-5 to II-4. Granulocyte colony-stimulating factor stimulated the production of white blood cells over four-fold and mononuclear cells (MNCs) 1.5-fold in the whole blood. Transplantation of 7.9×10 9 autologous MNCs into the left femoral artery rapidly decreased the leg pain intensity, with further improvement of Rutherford grades from II-4 to 0-0 without any side effects. In the four-year follow-up, significant improvement was found in terms of ankle brachial index, from nondetectable to 0.67, and peak systolic velocity, from 14.8 to 36.1 cm/s. Limb salvage and decreased resting pain were the notable outcomes of the treatment

    Tuberculous Aneurysm of the Abdominal Aorta: Endovascular Repair Using Stent Grafts in Two Cases

    Get PDF
    Tuberculous aneurysm of the aorta is exceedingly rare. To date, the standard therapy for mycotic aneurysm of the abdominal aorta has been surgery involving in-situ graft placement or extra-anatomic bypass surgery followed by effective anti-tuberculous medication. Only recently has the use of a stent graft in the treatment of tuberculous aortic aneurysm been described in the literature. We report two cases in which a tuberculous aneurysm of the abdominal aorta was successfully repaired using endovascular stent grafts. One case involved is a 42-year-old woman with a large suprarenal abdominal aortic aneurysm and a right psoas abscess, and the other, a 41-year-old man in whom an abdominal aortic aneurysm ruptured during surgical drainage of a psoas abscess

    Transcatheter Arterial Embolization in Patients with Kidney Diseases: an Overview of the Technical Aspects and Clinical Indications

    Get PDF
    Therapeutic embolization is defined as the voluntary occlusion of one or several vessels, and this is achieved by inserting material into the lumen to obtain transient or permanent thrombosis in the downstream vascular bed. There are a number of indications for this approach in urological practice, in particular for the patients with parenchymatous or vascular kidney disease. In this review, we present the different embolization techniques and the principally employed occluding agents, and then we present the principal clinical indications and we discuss other pathologies that may benefit from this non-invasive therapy. The complications, side effects and main precautions associated with this approach are also described

    Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    Get PDF
    Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd

    Arterial Occlusion Using a Microguidewire as a Radiofrequency Electrode

    No full text

    Microfluidic-Assisted Fabrication of Flexible and Location Traceable Organo-Motor

    No full text
    In this paper, we fabricate a flexible and location traceable micromotor, called organo-motor, assisted by microfluidic devices and with high throughput. The organo-motors are composed of organic hydrogel material, poly (ethylene glycol) diacrylate (PEGDA), which can provide the flexibility of their structure. For spatial and temporal traceability of the organo-motors under magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPION; Fe3O4) were incorporated into the PEGDA microhydrogels. Furthermore, a thin layer of platinum (Pt) was deposited onto one side of the SPION-PEGDA microhydrogels providing geometrical asymmetry and catalytic propulsion in aqueous fluids containing hydrogen peroxide solution, H2O2 Furthermore, the motion of the organo-motor was controlled by a small external magnet enabled by the presence of SPION in the motor architecture.X1154sciescopu
    corecore