639 research outputs found

    Crystal structure of 3-benzoyl-2-[(5-bromo-2-Hydroxy-3-methoxybenzylidene)amino]-4,5,6,7-tetrahydrobenzo[b]thiophene

    Get PDF
    In the cyclo­hexene ring of the title compound, C23H20BrNO3S, the -(CH2)4- atoms are positionally disordered [occupancy ratio = 0.753 (6):0.247 (6)]. The ring has a half-chair conformation for both the major and minor components. The dihedral angles between the mean plane of the thio­phene ring and those of the benzene and phenyl rings are 35.2 (4) and 57.7 (3)°, respectively. The planes of the two aryl rings are twisted with respect to each other by 86.4 (6)°. In the mol­ecule, there is an O-H...N hydrogen bond forming an S(6) ring motif. In the crystal, mol­ecules are linked via C-H...O hydrogen bonds, forming chains parallel to [100].Publisher PDFPeer reviewe

    Structure of lithium catena-poly[3,4-dihydroxopentaborate-1:5-[mu]-oxo]

    Get PDF
    LiH2B5O9, M(r) = 207.0, monoclinic, P2(1)/a, a = 13.576 (4), b = 9.077 (4), c = 5.543 (3) angstrom, beta = 91.47 (1)degrees, V = 682.8 (4)) angstrom3, Z = 4, D(x) = 2.013 g cm-3, lambda(Mo Kalpha) = 0.7107 angstrom, mu = 2.06 cm F(000) = 408, T = 293 K, R = 0.049 for 1689 independent observed reflections. The structure contains chains of B5O9H2]- anions linked through shared O atoms. In each anionic unit two B3O3 rings, each incorporating two triangular BO3 units, are connected by a shared tetrahedral BO4 unit. The Li atom has four O-atom neighbours arranged in an approximately tetrahedral configuration. The Li polyhedra connect B-O polyanions to form a two-dimensional network. Further connections are provided by hydrogen bonds

    Hydrothermal Crystallization and Electrical Conductivity of Aluminophosphate Zeolites -

    Get PDF

    Crystal Growth and Characterization of (NH4)3BaCl52H2O

    Get PDF

    Crystal Growth, Morphology and Properties of NaHMP2O7 (M = Ni, Co, Mn, Zn, Cd, Pb)

    Get PDF

    Crystal Growth and Morphology of Rare Earth Phosphates

    Get PDF

    Sunlight-Driven Combustion Synthesis of Defective Metal Oxide Nanostructures with Enhanced Photocatalytic Activity

    Get PDF
    Synthesis of metal oxide nanostructures through combustion routes is a promising technique owing to its simplicity, rapidity, scalability, and cost-effectiveness. Herein, a sunlight-driven combustion approach is developed to synthesize pristine metal oxides and their heterostructures. Sunlight, a sustainable energy source, is used not only to initiate the combustion reaction but also to create oxygen vacancies on the metal oxide surface. ZnO nanostructures are successfully synthesized using this novel approach, and the products exhibit higher photocatalytic activity in the decomposition of methyl orange (MO) than ZnO nanostructures synthesized by the conventional methods. The higher photocatalytic activity is due to the narrower band gap, higher porosity, smaller and more uniform particle size, surface oxygen vacancies, as well as the enhanced exciton dissociation efficiency induced by the sunlight. Porous Fe3O4 nanostructures are also prepared using this environmentally benign method. Surprisingly, few-layer Bi2O3 nanosheets are successfully obtained using the sunlight-driven combustion approach. Moreover, the approach developed here is used to synthesize Bi2O3/ZnO heterostructure exhibiting a structure of few-layer Bi2O3 nanosheets decorated with ZnO nanoparticles. Bi2O3 nanosheets and Bi2O3/ZnO heterostructures synthesized by sunlight-driven combustion route exhibit higher photocatalytic activity than their counterparts synthesized by the conventional solution combustion method. This work illuminates a potential cost-effective method to synthesize defective metal oxide nanostructures at scale. Copyright - 2019 American Chemical Society.This study was supported by University Grants Commission, India, under University with Potential for Excellence (UPE) program at University of Mysore, UGC JRF (Award No. F.19-1/2013(SA-I)), and Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) through project no. DF181021.Scopu

    Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation

    Get PDF
    Continuous hydrothermal synthesis was highlighted in a recent review as an enabling technology for the production of nanoparticles. In recent years, it has been shown to be a suitable reaction medium for the synthesis of a wide range of nanomaterials. Many single and complex nanomaterials such as metals, metal oxides, doped oxides, carbonates, sulfides, hydroxides, phosphates, and metal organic frameworks can be formed using continuous hydrothermal synthesis techniques. This work presents a methodology to characterize continuous hydrothermal flow systems both experimentally and numerically, and to determine the scalability of a counter current supercritical water reactor for the large scale production (>1,000 T·year–1) of nanomaterials. Experiments were performed using a purpose-built continuous flow rig, featuring an injection loop on a metal salt feed line, which allowed the injection of a chromophoric tracer. At the system outlet, the tracer was detected using UV/Vis absorption, which could be used to measure the residence time distribution within the reactor volume. Computational fluid dynamics (CFD) calculations were also conducted using a modeled geometry to represent the experimental apparatus. The performance of the CFD model was tested against experimental data, verifying that the CFD model accurately predicted the nucleation and growth of the nanomaterials inside the reactor
    corecore