2 research outputs found

    Antikaon production in A+A collisions at SIS energies within an off-shell G-matrix approach

    Full text link
    The production and propagation of antikaons -- described by dynamical spectral functions Ah(X,P,M2)A_h(X,\vec{P},M^2) as evaluated from a coupled channel GG-matrix approach -- is studied for nucleus-nucleus collisions at SIS energies in comparison to the conventional quasi-particle limit and the available experimental data using off-shell transport theory. We find that the KK^- spectra for 12C+12C^{12}C + ^{12}C and 58Ni+58Ni^{58}Ni + ^{58}Ni at 1.8 A\cdotGeV remain underestimated in the GG-matrix approach as in the on-shell quasi-particle approximation whereas the preliminary spectra for Au+AuAu + Au at 1.5 A\cdotGeV are well described in both limits. This also holds approximately for the KK^- rapidity distributions in semi-central collisions of Ni+NiNi+Ni at 1.93 A\cdotGeV. However, in all limits considered there is no convincing description of all spectra simultaneously. Our off-shell transport calculations, furthermore, demonstrate that the strongest in-medium effects should be found for low antikaon momenta in the center-of-mass frame, since the deceleration of the antikaons in the attractive Coulomb and nuclear potentials and the propagation to the on-shell mass induces a net shift and squeezing of the KK^- spectra to the low momentum regime.Comment: 44 pages, including 18 eps figures, to be published in Nucl. Phys.
    corecore