94 research outputs found

    Assessment of the Socio-Economic Impact of Late Blight and State of the Art of Management in European Organic Potato Production Systems

    Get PDF
    In Europe, late blight, caused by Phytophthora infestans, is the most devastating disease affecting organic (and conventional) potato production. Under suitable environmental conditions the disease can spread rapidly and it can cause complete crop loss. The extent of damage due to late blight depends on several factors: in organic production systems these factors include climate, choice of variety, soil management and use of crop protection agents such as copper. Therefore, the extent of economic damage varies between European regions. Council Regulation (EEC) No 2092/91, amended by Commission Regulation (EC) No 473/2002 of 15 March 2002 regulates the use of copper in organic agriculture. Copper has been the single most important control agent in organic late blight control. Therefore, the reduction or an eventual phasing out of copper use will have varying impacts in different regions. This report presents the results of a detailed survey that has been conducted in 7 European countries in the year 2001. It is a subproject of the EU-funded project Blight-MOP (QLRT 31065). The survey investigates legislative, socio-economic and production parameters. The aim of this study was: (i) to obtain an inventory of the current organic potato production techniques, (ii) to assess the impact of a potential ban of copper on yields and viability of organic potato production and (iii) to identify alternative plant protection strategies that are used by organic farmers. This report includes: (i) statistics on yields, farm gate prices, and production techniques, (ii) an analysis offarmer observations and experiences on the extent and impact of late blight epidemics, (iii) an analysis of the farmer’s motivations, expectations and their assessment of the potential impact of a copper ban. Using multiple linear regression we identified production factors which appear to consistently contribute to production success

    Bird migration flight altitudes studied by a network of operational weather radars

    Get PDF
    A fully automated method for the detection and quantification of bird migration was developed for operational C-band weather radar, measuring bird density, speed and direction as a function of altitude. These weather radar bird observations have been validated with data from a high-accuracy dedicated bird radar, which was stationed in the measurement volume of weather radar sites in The Netherlands, Belgium and France for a full migration season during autumn 2007 and spring 2008. We show that weather radar can extract near real-time bird density altitude profiles that closely correspond to the density profiles measured by dedicated bird radar. Doppler weather radar can thus be used as a reliable sensor for quantifying bird densities aloft in an operational setting, which—when extended to multiple radars—enables the mapping and continuous monitoring of bird migration flyways. By applying the automated method to a network of weather radars, we observed how mesoscale variability in weather conditions structured the timing and altitude profile of bird migration within single nights. Bird density altitude profiles were observed that consisted of multiple layers, which could be explained from the distinct wind conditions at different take-off sites. Consistently lower bird densities are recorded in The Netherlands compared with sites in France and eastern Belgium, which reveals some of the spatial extent of the dominant Scandinavian flyway over continental Europe

    Feasibility of pharmacy-initiated pharmacogenetic screening for CYP2D6 and CYP2C19

    Get PDF
    PURPOSE: Our purpose was to investigate the feasibility of pharmacy-initiated pharmacogenetic (PGt) screening in primary care with respect to patient willingness to participate, quality of DNA collection with saliva kits, genotyping, and dispensing data retrieved from the pharmacy. METHODS: Polypharmacy patients aged >60 years who used at least one drug with Anatomical Therapeutic Chemical (ATC) code N06AA01-N06AX19 (antidepressants), A02BC01-A02BC05 (proton-pump inhibitors), N05AA01-N05AH04 (antipsychotics), or C07AB02 (metoprolol) in the preceding 2 years were randomly selected. DNA was collected with saliva kits and genotyped for CYP2D6 and CYP2C19 with the AmpliChip. Pharmacy dispensing records were retrieved and screened for drugs interacting with the patient's CYP2D6 and CYP2C19 genotype by using the evidence-based PGt guidelines from the Dutch Pharmacogenetics Working Group. RESULTS: Out of the 93 invited patients, 54 (58.1%) provided informed consent. Nine saliva samples (16.7%) contained too little DNA. Call rates for CYP2D6 and CYP2C19 were 93.3% and 100%, respectively. Frequencies of genotype-predicted phenotype were 2.4%, 38.1%, 54.8%, and 4.8% for CYP2D6 poor metabolizers (PM), intermediate metabolizers (IM), extensive metabolizers (EM), and ultrarapid metabolizers (UM) respectively. For CYP2C19 genotype-predicted phenotype, frequencies were 2.2%, 15.6%, and 82.2% for PM, IM, and EM, respectively. CONCLUSIONS: This study shows that pharmacy-initiated PGt screening is feasible for a primary care setting

    Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage.

    Get PDF
    The hollow cavities of coordination cages can provide an environment for enzyme-like catalytic reactions of small-molecule guests. Here, we report a new example (catalysis of the Kemp elimination reaction of benzisoxazole with hydroxide to form 2-cyanophenolate) in the cavity of a water-soluble M8L12 coordination cage, with two features of particular interest. First, the rate enhancement is among the largest observed to date: at pD 8.5, the value of kcat/kuncat is 2 × 10(5), due to the accumulation of a high concentration of partially desolvated hydroxide ions around the bound guest arising from ion-pairing with the 16+ cage. Second, the catalysis is based on two orthogonal interactions: (1) hydrophobic binding of benzisoxazole in the cavity and (2) polar binding of hydroxide ions to sites on the cage surface, both of which were established by competition experiments

    Mapping the internal recognition surface of an octanuclear coordination cage using guest libraries

    Get PDF
    Size and shape criteria for guest binding inside the cavity of an octanuclear cubic coordination cage in water have been established using a new fluorescence displacement assay to quantify guest binding. For aliphatic cyclic ketones of increasing size (from C5 to C11), there is a linear relationship between ΔG for guest binding and the guest’s surface area: the change in ΔG for binding is 0.3 kJ mol–1 Å–2, corresponding to 5 kJ mol–1 for each additional CH2 group in the guest, in good agreement with expectations based on hydrophobic desolvation. The highest association constant is K = 1.2 × 106 M–1 for cycloundecanone, whose volume is approximately 50% of the cavity volume; for larger C12 and C13 cyclic ketones, the association constant progressively decreases as the guests become too large. For a series of C10 aliphatic ketones differing in shape but not size, ΔG for guest binding showed no correlation with surface area. These guests are close to the volume limit of the cavity (cf. Rebek’s 55% rule), so the association constant is sensitive to shape complementarity, with small changes in guest structure resulting in large changes in binding affinity. The most flexible members of this series (linear aliphatic ketones) did not bind, whereas the more preorganized cyclic ketones all have association constants of 104–105 M–1. A crystal structure of the cage·cycloundecanone complex shows that the guest carbonyl oxygen is directed into a binding pocket defined by a convergent set of CH groups, which act as weak hydrogen-bond donors, and also shows close contacts between the exterior surface of the disc-shaped guest and the interior surface of the pseudospherical cage cavity despite the slight mismatch in shape

    The antimicrobial effects of the alginate oligomer OligoG CF-5/20 are independent of direct bacterial cell membrane disruption

    Get PDF
    Concerns about acquisition of antibiotic resistance have led to increasing demand for new antimicrobial therapies. OligoG CF-5/20 is an alginate oligosaccharide previously shown to have antimicrobial and antibiotic potentiating activity. We investigated the structural modification of the bacterial cell wall by OligoG CF-5/20 and its effect on membrane permeability. Binding of OligoG CF-5/20 to the bacterial cell surface was demonstrated in Gram-negative bacteria. Permeability assays revealed that OligoG CF-5/20 had virtually no membrane-perturbing effects. Lipopolysaccharide (LPS) surface charge and aggregation were unaltered in the presence of OligoG CF-5/20. Small angle neutron scattering and circular dichroism spectroscopy showed no substantial change to the structure of LPS in the presence of OligoG CF-5/20, however, isothermal titration calorimetry demonstrated a weak calcium-mediated interaction. Metabolomic analysis confirmed no change in cellular metabolic response to a range of osmolytes when treated with OligoG CF-5/20. This data shows that, although weak interactions occur between LPS and OligoG CF-5/20 in the presence of calcium, the antimicrobial effects of OligoG CF-5/20 are not related to the induction of structural alterations in the LPS or cell permeability. These results suggest a novel mechanism of action that may avoid the common route in acquisition of resistance via LPS structural modification

    Perspectives and challenges for the use of radar in biological conservation

    Get PDF
    Radar is at the forefront for the study of broad-scale aerial movements of birds, bats and insects and related issues in biological conservation. Radar techniques are especially useful for investigating species which fly at high altitudes, in darkness, or which are too small for applying electronic tags. Here, we present an overview of radar applications in biological conservation and highlight its future possibilities. Depending on the type of radar, information can be gathered on local- to continental-scale movements of airborne organisms and their behaviour. Such data can quantify flyway usage, biomass and nutrient transport (bioflow), population sizes, dynamics and distributions, times and dimensions of movements, areas and times of mass emergence and swarming, habitat use and activity ranges. Radar also captures behavioural responses to anthropogenic disturbances, artificial light and man-made structures. Weather surveillance and other long-range radar networks allow spatially broad overviews of important stopover areas, songbird mass roosts and emergences from bat caves. Mobile radars, including repurposed marine radars and commercially dedicated ‘bird radars’, offer the ability to track and monitor the local movements of individuals or groups of flying animals. Harmonic radar techniques have been used for tracking short-range movements of insects and other small animals of conservation interest. However, a major challenge in aeroecology is determining the taxonomic identity of the targets, which often requires ancillary data obtained from other methods. Radar data have become a global source of information on ecosystem structure, composition, services and function and will play an increasing role in the monitoring and conservation of flying animals and threatened habitats worldwide
    corecore