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Abstract

The hollow cavities of coordination cages can provide an environment for enzyme-like
catalytic reactions of small-molecule guests. We report here a new example (catalysis
of the Kemp elimination - reaction of benzisoxazole with hydroxide to form 2-
cyanophenolate) in the cavity of a water-soluble MgL12 coordination cage, with two
features of particular interest. Firstly, the rate enhancement is amongst the largest so
far observed: at pD 8.3, kcat/Kuncat is 2 x 105, due to the accumulation of a high
concentration of partially desolvated hydroxide ions around the bound guest arising
from ion-pairing with the 16+ cage. Secondly, the catalysis is based on two orthogonal
interactions: (i) hydrophobic binding of benzisoxazole in the cavity, and (ii) polar
binding of hydroxide ions to sites on the cage surface, both of which were established by
competition experiments. Hundreds of turnovers occur with no loss of activity due to

expulsion of the hydrophilic, anionic product.



Since the realisation that hollow molecular container molecules can accommodate guest
molecules in their central cavities,!-3 their ability to modify the reactivity of their bound
guests has been of great interest.#8 Well known examples include Cram’s stabilisation
of highly-reactive cyclobutadiene;* Fujita’s ‘ship-in-a-bottle’ synthesis of cyclic silanol
oligomers;> Nitschke’s stabilisation of P4 in a tetrahedral cage;® and the demonstration
of unusual regioselectivity in a Diels-Alder reaction when the two reacting molecules are
co-confined in a host cavity.”

The ultimate expression of this behaviour is efficient catalysis of a reaction
occurring in the cavity of a container molecule.? These synthetic systems have the
potential to achieve the selectivity and catalytic rate enhancements displayed by
biological systems. For example, artificial container molecules provide relatively rigid
and hydrophobic central cavities that may mimic binding pockets in enzymes. These
containers may be purely organic hydrogen-bonded assemblies (such as Rebek’s
‘softball’ dimer)?® or may be metal-ligand polyhedral coordination cages [such as Fujita’s
Pds/tris(pyridyl)triazine cage].1 Coordination cages offer particular promise in this
field because of the ease with which they can be formed by a self-assembly process from
very simple component parts, using the predictable coordination geometries of metal
ions to provide the three-dimensional ordering of the components which generates the
necessary cavity.1-3811.12

In order for a container molecule to act as an efficient catalyst it needs to (i)
recognise and bind the guest(s); (ii) accelerate the reaction by increasing the local
concentration of reactants and/or stabilising the transition state; and (iii) expel the
product to allow catalytic turnover.® Guest binding in cage cavities has been very well
studied and is becoming a mature field,! to the extent that a modeling tool for
quantitative prediction of guest binding has recently been reported by us.!?3 For a
reaction of the bound guest to be accelerated by the host, the transition state must be
bound more tightly than the ground state. However, the factors that lead to efficient
recognition of the transition state compared to the substrate are often linked to tight
binding of the product. When the product binds much more tightly than the substrate,
product inhibition restricts turnover and leads to inefficient catalysis.814 Hence, the
biggest challenge in establishing a catalytic cycle is often that step (ii) (the rate

acceleration) occurs without step (iii) (release of the product to allow turnover).



Ensuring turnover - and thereby obtaining genuine catalysis - can be achieved in
a variety of ways. Rebek and co-workers have demonstrated how turnover occurs when
the Diels-Alder reaction product from catalysis in a cavity has a substantially reduced
affinity for the capsule due to unfavourable (or less favourable) steric or electronic
interactions with the host compared to the starting materials(s).”1>16 An irreversible
reaction of an initially-generated product to cause its release was reported by Raymond
and Bergman: after an Aza-Cope cyclisation reaction in an anionic cage cavity,!” the
strongly-binding product (an iminium cation) is rapidly hydrolysed to give a neutral
aldehyde, which binds weakly ensuring that the cavity is vacated and providing catalytic
turnover. A change in charge between starting material and product can also be used as
the basis of turnover. Raymond and Bergman demonstrated catalytic hydrolysis of a
neutral orthoformate guest to an anionic carboxylate, which is expelled from the cage.!8
Rebek and co-workers have exploited the same principle, viz. conversion of a neutral,
hydrophobic substrate that binds strongly in a water-soluble cavitand to an anionic,
hydrophilic product which is accordingly released, facilitating turnover and catalysis.1?
Examples of catalysis in cage cavities now vary from the Knoevenagel reaction?? to the
enantioselective hydrolysis of an organophosphate dichloride,?! with the best example
reported so far being an acid-catalysed Nazarov cyclisation of pentamethyl-
cyclopentadienol in the cavity of an anionic cage, which displays a rate enhancement of
2.1 million compared to the uncatalysed reaction with hundreds of turnovers.??

We report here a new example of catalysis in a coordination cage cavity, which
occurs with very high rate enhancements and multiple turnovers making this system
comparable to the best that are currently known in supramolecular catalysis. The
system is unusual in that it uses two orthogonal supramolecular interactions to bring

together the two components of a bimolecular reaction.

Results and Discussion

The cage catalyst, guest substrate, and structure of the host-guest complex

The catalyst is the octanuclear [CogL12]¢* coordination cage shown in Fig. 1, with
a Co(II) ion at each vertex of an approximate cube and a bridging ligand spanning every
edge.23-2> The presence of hydroxyl groups on the external surface renders the cage

water-soluble, whilst the hydrophobic interior cavity (volume = 400 A3) allows binding



of hydrophobic organic guests that are a good shape / size match for the cavity with
binding constants of up to 108 M-1 in water.1323.26 Windows in the centre of each face
allow ingress / egress of guests. Importantly, only neutral guests bind strongly: cationic
(protonated amines) or anionic (carboxylate) guests bind much more weakly as they are
hydrophilic and preferentially solvated by bulk water, which means that pH can be used
to control uptake and release of ionisable guests.?728 In the catalytic system we report
here, conversion of a neutral starting material to an anionic product is the basis of
product release and catalytic turnover.

The reaction that is catalysed is the Kemp elimination (Fig. 2) in which
benzisoxazole undergoes a ring-opening reaction with hydroxide to afford 2-cyano-
phenolate.2?3% The Kemp elimination has been studied in particular detail as an
exemplar E2 elimination that can be adapted to a wide range of reaction rates, and as a
sensitive probe for catalytic systems, both biological and artificial.31-3¢ The reaction is
first order in OH- under basic conditions and reaches a minimum rate at around pH 6
when water, rather than hydroxide, acts as the base. The observed rate constants for
the base catalysed (dashed black line) and spontaneous (dashed blue line) reactions are
shown in Fig. 3; our measurements (black circles) of the uncatalysed Kemp elimination
reaction agree very well with the published values.29:30

Benzisoxazole was identified by a recent computational screening experiment as
a possible guest for the cavity of the cage, and it does indeed bind in water with an
association constant of Kass = 4 x 103 M-1.13 Treatment of single crystals of the cage with
neat liquid benzisoxazole resulted in the guest being taken up into the empty cage
cavity,2627 allowing a crystal structure of the cage/benzisoxazole complex to be
determined (Fig. 4a; see Supplementary Information). The cage has twofold
crystallographic symmetry, and the structure shows that two equivalent sites in the
cavity are both partially occupied by a guest molecule: the structure refines best with all
guest atoms having a site occupancy of 0.5 such that there is (on average) one guest
molecule present which is disordered over the two possible sites. This agrees with
solution measurements of guest binding which confirm a 1:1 host:guest ratio in
solution.!3 The CH hydrogen atom of the guest that is removed in the elimination
reaction is directed towards one of the windows in the cage. The guest is oriented inside
the cavity, as we have seen in other structures of cage/guest complexes,?6:27 such that

the electron-rich N and O atoms are directed towards the polar pockets. These pockets



lie at the two diagonally opposed fac tris-chelate metal sites where there is a convergent
array of inwardly-directed ligand C-H atoms in regions of relatively high electrostatic
potential.3” From the structure, we can see that there are CHeeeN and CHeeeO hydrogen
bonds between the guest and the internal surface of the cage (Fig. 4b). Fig. 3c shows
how the windows in the centre of each face (cf. Fig. 1) are all occupied by
tetrafluoroborate anions in the solid state, which form multiple CHeeeF hydrogen-

bonding interactions with the cage.

Measurements of catalysis and its pD dependence

It was immediately apparent from 'H NMR experiments that conversion of
benzisoxazole to 2-cyanophenolate in aqueous base was accelerated by the presence of
cage. To measure the rate constant for the reaction in the cage (kcat) with little
interference from the background reaction (kuncat), we first monitored the reaction in
aqueous solution at pD 10.2 under conditions where there was excess catalyst (1 mM
cage, 0.85 mM benzisoxazole). Under these conditions around 65% of the benzisoxazole
is bound at the start of the experiment. There is a clear difference in rate due to the
presence of the cage (Supporting Information, Fig. S1 and Table S1), and at this pD,
Kcat/kuncat is 4500. An important point is that at the pD of the reaction, the product 2-
cyanophenolate (pKa = 6.9) is deprotonated and therefore hydrophilic and shows no
sign of binding to the cage by NMR spectroscopy.?”?8 Thus, the anionic product of the
reaction is expelled from the cavity, facilitating catalytic turnover and we did not
observe the reaction rate decreasing with time: the reaction was not being inhibited by
accumulation of product.

To confirm that the reaction is indeed associated with the benzisoxazole being
bound in the cage cavity, we added an excess of a strongly-binding competing guest (20
mM cycloundecanone, K = 1.2 x 106 M-1).26 With this inhibitor present, the reaction rate
dropped to that of the uncatalysed reaction (Supplementary Information, Fig. S9 and
Table S2), because the competing guest prevents substrate binding in the cage cavity.
This demonstrates that the rate acceleration does not occur due to some interaction
between the cage exterior and the substrate. We also showed that in the absence of cage
but in the presence of 1mM of Co?* ions there was no rate acceleration: the metal ions

have no catalytic effect on their own (Supplementary information, Fig. S9 and Table S2).



We measured the catalysed reaction rate at a range of pD values by 'TH NMR
spectroscopy in D20, and the results are shown in Fig. 3 (see Supporting Information,
Figs. S3 - S8 and Table S1). At pD = 12 the cage starts to decompose which provides an
upper limit to the pD range. In the pD window 8.5 - 11.4, the rate of the catalysed
reaction does not change: it is completely independent of the concentration of DO- ions
(Fig. 3, red line). Over this pD range, the rate of the uncatalysed reaction drops by an
order of magnitude for every decrease in pD by 1 unit (Fig. 3, black dotted line), so it
follows that the kcat/kuncat ratio increases by a factor of 10 for every decrease in pD by 1
unit until at pD 8.5, the directly observed kcat/Kkuncat ratio is 2 x 10°. If we compare the
rates of the catalysed and uncatalysed reactions when they are both pH independent, we
find that kcat/Kuncat is 6 x 106.

Two questions arise from these observations. Firstly, how does the cage actas a
catalyst for this reaction? As the reaction proceeds the transition state involves a
buildup of negative charge on the O atom, which could be stabilised by adjacent H-bond
donors.3137 However, the H-bond donor pocket on the interior surface of the cage
cavity is less effective at stabilising H-bond acceptor sites than is water: a carbonyl-
containing guest in this pocket is actually destabilised relative to solvation by water by
about 7 k] mol-1,26 and the penalty must be even larger for a negatively charged
transition state. The interior of the cage therefore provides a poorer medium than water
for the reaction because of preferential solvation of the developing negative charge by
water, and the weak binding of the product anion underlines this.27.28 In these terms,
binding the substrate is anti-catalytic.

Secondly, what is the reason for the pD-independence of kcat? As there are no
basic sites associated with the cage, the rate invariance in the pD 8.5 - 11.4 range could
be explained by the use of water as the base for the reaction rather than hydroxide.
However if the cage interior does not stabilise the developing negative charge on the
product, it is unlikely that a weak base (water) could replace the hydroxide involved in
the solution reaction and give the high rates observed for the catalysed reaction. Thus
neither the origin of the catalysis, nor the pD independence of its rate, can be explained

just by consideration of the environment inside the cage cavity.

Proposed catalytic mechanism based on orthogonal interactions for substrate and DO-

binding



The high catalytic reactivity and region of pD independence are both consistent
with a model that has been developed for catalysis by micelles and vesicles.32-34 It is
proposed in this model that ion-pairing effects result in accumulation of hydroxide ions
around the positively charged surfaces of the micelle or vesicle, resulting in both a high
local concentration of hydroxide ions and partial desolvation of the hydroxide ions
which increases their reactivity. For cationic vesicles, these effects lead to a maximum
observed rate acceleration for the reaction of benzisoxazoles of about 800 fold.3* We
propose that the surface of the highly positively charged cage catalyst (16+) acts in a
similar way, concentrating partially desolvated hydroxide ions around its surface (Fig.
5). We know from numerous structural studies that the windows in each face of the
cage are invariably occupied by anions in the crystal structures (cf. Fig. 4c),23.24.26,27.37
which would position hydroxide close to the CH of the substrate constrained in the
cavity. If these sites around the cage are saturated with hydroxide ions at pD 8.5 due to
the high positive charge, increasing the pD to 11.4 will not result in an increase in the
local hydroxide concentration and the rate of the reaction should therefore be
independent of pD in this range. To test this, we added a large excess of chloride ions
(47 mM) to the solution to compete for the sites on the cage surface: this reduced the
observed rate of reaction to that of the background rate (Fig. 3, green point;
Supplementary Information, Fig. S9 and Table S2). This cannot just be an effect of
changing the medium as the Kemp elimination is known to be insensitive to ionic
strength?930 and the addition of chloride has no effect on the rate of the background
reaction.3? [We note that, as well as being present in ~180 fold excess relative to
hydroxide in solution at the pD of the experiment, chloride ions are preferentially bound
to the interface region of cationic micelles (typically 10 fold323839) as they are less
strongly solvated by water than hydroxide. This explains why the reduction in
concentration of the catalytically active cage in the presence of chloride is greater than
the ratio of the anion concentrations].

Overall, the catalytic activity of the cage can be accounted for by a combination of
concentration of the base around the bound guest (which itself may be positioned by the
internal binding sites such that the reactive CH is directed towards the base in one of the
cage windows), and desolvation of the bound base to make it more potent for the
elimination reaction. The intersection of the two lines in Fig. 3 (rate constants of

catalysed and uncatalysed reactions as a function of pD) occurs at pD 13.8, which means



that the accumulation of DO- ions around the cage by ion-pairing, even when the bulk pD
is as low as 8.5, affords an environment around the substrate that is equivalent to an
aqueous solution of pD 13.8 (100 mM [DO-]). Formally, the cage provides 440 fold
enhancement ((kcat®Kass)/kpo-) of the reaction of the substrate with DO- compared to
bulk water, which represents 15 k] mol-! stabilisation of the transition state. We note
that there is an interesting parallel with the Raymond / Bergman cage based on anionic
metal tris-catecholate vertices, in which the high negative charge encourages
protonation of bound guests, and thereby facilitates acid-catalysed reactions even in
basic conditions.1840 These observations imply that our cage may be able to catalyse
reactions of a wide range of bound guests that require an anionic base or nucleophile

and so could offer a versatile framework for catalysing bimolecular reactions.

Catalytic turnover

Finally we demonstrate that the catalytic reaction occurs with a large number of
turnovers. To a 1 mM solution of the cage in water at pD = 10.2 we added several
successive portions of benzisoxazole (0.85 equivalents each), waiting until each aliquot
had completely reacted before adding the next. Under these conditions the uncatalysed
reaction does not contribute significantly, partly as it is slow at this pH and partly
because under these conditions almost all of the added guest is bound to the cage. We
can see from Fig. 6 (see also Supplementary Information, Table S3) that after multiple
additions of guest the reaction profile is completely unchanged, and so there is no
detectable change in activity after 5 turnovers. In a separate experiment we added 100
equivalents of benzisoxazole to a 0.1 mM solution of cage, at pD 9.9 where the kcat/kuncat
ratio is ca. 8800. After conversion of all the benzisoxazole to 2-cyanophenolate (100
turnovers), the 1H NMR spectrum of the cage was unchanged (Supporting Information,

Fig. S10).

Conclusions

In conclusion we have demonstrated that the [CogL12]'¢* coordination cage is an
effective catalyst for the Kemp elimination using benzisoxazole as substrate due to a
combination of (i) a high local concentration of partially-desolvated hydroxide ions
around the cavity arising from ion-pairing with the cationic cage, and (ii) localisation of

the hydrophobic substrate in this cavity. Thus, the catalyst uses two different types of



supramolecular interaction, associated with different recognition sites on the cage, to
bring the two reacting components into close proximity. The significance of both
recognition sites was confirmed by competitive inhibition experiments: addition of a
competitive guest, cycloundecanone, prevents binding of the substrate inside the cage
cavity; and addition of a competitive anion, chloride, prevents binding of hydroxide to
the cage windows. kcat is independent of pD in the range 8.5 - 11.4 leading to a
maximum observed rate acceleration of 2 x 10° fold. This is much greater than
previously observed for catalysis by vesicles and micelles, and these cages accordingly
present more specific binding cavities and robust structures than these weakly bound

supramolecular aggregates.
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Fig. 1 Structure of the host cage [CogL12](BF4)1s6. (a) A sketch showing the
arrangement of metal ions and bridging ligands. Green circles indicate the metal
ions that define the vertices of an approximate cube; the bridging ligands lie
along the edges of the cube, with each ligand spanning two metal ions. (b)
Structure of the empty cage (from ref. 23); note the apertures in the faces of the

cube that allow ingress and egress of guests.
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Fig. 2 The Kemp elimination reaction. Deprotonation of benzisoxazole at the 3-

position leads to ring-opening and formation of 2-cyanophenolate.
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Fig. 3 pD-dependence of the reaction rate constants. Black circles show the pD-
dependence of the uncatalysed reaction, re-measured in this work. The black and
blue dashed lines show the rate dependence of the base-catalysed and the
spontaneous (water rather than hydroxide as nucleophile) reactions,
respectively, calculated from data in ref. 29 and 30. The red circles show the pD-
dependence of the cage-catalysed reaction (D20, 298 K). For the catalysed
reactions the concentration of cage was 1 mM; the concentration of
benzisoxazole was 0.85 mM. The purple circle (arrowed) shows the rate of the
reaction in the presence of catalyst but with a competing guest (20 mM
cycloundecanone) present as an inhibitor. The green circle (arrowed) shows the
rate of the reaction in the presence of catalyst but with 47 mM LiCl as a
competitor for the DO- binding sites. The vertical black arrows indicate the
acceleration of the reaction due to catalysis by the coordination cage. Error bars
are not shown as the uncertainty in each individual measurement is < the
diameter of the dot; the standard deviations are tabulated in Table S1.
In summary the data show that (i) catalysis of the reaction is very effective; (ii) it
requires binding of the substrate in the cavity and binding of DO- anions around
the cage surface; and (iii) it is pD independent over a wide range because of

saturation of the cage surface with DO- ions even at pD 8.5.
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Fig. 4.

Crystal structure of the cage / benzisoxazole complex. (a) A view of the cage
complex cation (wireframe) showing a bound guest (space-filling); guests have
a site occupancy of 0.5 in each of two equivalent sites in the cavity such that
there is one guest per cavity. The arrow denotes the CH proton that is removed
in the Kemp elimination; it is clearly visible through the ‘window’. (b) A view
showing the H-bonding environment around the guest (OeeeH and NeeeH
separations in A). (c) A view from the same viewpoint as that in (a), but
showing the array of six tetrafluoroborate anions which occupy the windows in

the face-centres surrounding the central cavity.
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Fig.5 Cartoon of the catalytic reaction cycle. Starting center left, hydrophobic
benzisoxazole binds in the cavity with the proton at the 3-position ‘visible’ to a
hydroxide ion that is bound in the adjacent cage window (top). The elimination
reaction occurs to produce a 2-cyanophenolate ion as the product which binds
less strongly due to the negative charge which renders it hydrophilic; it is

therefore ejected to give catalytic turnover.
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Demonstration of catalytic turnover with the cage catalyst. The graph
shows the accumulation of 2-cyanophenolate (based on integration of its 1H
NMR signal as it forms) following addition of a series of aliquots of
benzisoxazole substrate (0.85 equivalents each) to a solution of cage (1 mM) in
D20 at pD 10.2. Aliquots of substrate were added at 720 second intervals; the
five individual reaction profiles are superimposable, giving a total of 4.2
turnovers. Error bars are not shown as the uncertainty in each individual

measurement is < the diameter of the dot.
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The Kemp elimination is catalysed in the cavity of a coordination cage with a rate
enhancement (Kcat/Kuncat) 0of 200,000 at pD 8.5. The catalysis requires two orthogonal
interactions to bring together the components: hydrophobic binding of benzisoxazole,

and accumulation of hydroxide ions at the cationic cage surface by ion-pairing.

18



