35,745 research outputs found
Recommended from our members
Security-Informed Safety: Supporting Stakeholders with Codes of Practice
Codes of practice provide principles and guidance on how organizations can incorporate security considerations into their safety engineering lifecycle and become more security minded
Evaluation of Two Commercially Available Cannabidiol Formulations for Use in Electronic Cigarettes
Since 24 states and the District of Columbia have legalized marijuana in some form, suppliers of legal marijuana have developed Cannabis sativa products for use in electronic cigarettes (e-cigarettes). Personal battery powered vaporizers, or e-cigarettes, were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. The liquid formulations used in these devices are comprised of an active ingredient such as nicotine mixed with vegetable glycerin (VG) and/or propylene glycol (PG) and flavorings. A significant active ingredient of C. sativa, cannabidiol (CBD), has been purported to have anti-convulsant, anti-nociceptive, and anti-psychotic properties. These properties have potential medical therapies such as intervention of addictive behaviors, treatments for epilepsy, management of pain for cancer patients, and treatments for schizophrenia. However, CBD extracted from C. sativa remains a DEA Schedule I drug since it has not been approved by the FDA for medical purposes. Two commercially available e-cigarette liquid formulations reported to contain 3.3 mg/mL of CBD as the active ingredient were evaluated. These products are not regulated by the FDA in manufacturing or in labeling of the products and were found to contain 6.5 and 7.6 mg/mL of CBD in VG and PG with a variety of flavoring agents. Presently, while labeled as to content, the quality control of manufacturers and the relative safety of these products is uncertain
Exploring Io's atmospheric composition with APEX: first measurement of 34SO2 and tentative detection of KCl
The composition of Io's tenuous atmosphere is poorly constrained. Only the
major species SO2 and a handful of minor species have been positively
identified, but a variety of other molecular species should be present, based
on thermochemical equilibrium models of volcanic gas chemistry and the
composition of Io's environment. This paper focuses on the spectral search for
expected yet undetected molecular species (KCl, SiO, S2O) and isotopes (34SO2).
We analyze a disk-averaged spectrum of a potentially line-rich spectral window
around 345 GHz, obtained in 2010 at the APEX-12m antenna (Atacama Pathfinder
EXperiment). Using different models assuming either extended atmospheric
distributions or a purely volcanically-sustained atmosphere, we tentatively
measure the KCl relative abundance with respect to SO2 and derive a range of
4x10^{-4}-8x10^{-3}. We do not detect SiO or S2O and present new upper limits
on their abundances. We also present the first measurement of the 34S/32S
isotopic ratio in gas phase on Io, which appears to be twice as high as the
Earth and ISM reference values. Strong lines of SO2 and SO are also analyzed to
check for longitudinal variations of column density and relative abundance. Our
models show that, based on their predicted relative abundance with respect to
SO2 in volcanic plumes, both the tentative KCl detection and SiO upper limit
are compatible with a purely volcanic origin for these species.Comment: Accepted for publication in ApJ. 11 pages, 4 figure
Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange NMR
We demonstrate a minimally invasive nuclear magnetic resonance (NMR)
technique that enables determination of the surface-area-to-volume ratio (S/V)
of soft porous materials from measurements of the diffusive exchange of
laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the
solid phase. We apply this NMR technique to porous polymer samples and find
approximate agreement with destructive stereological measurements of S/V
obtained with optical confocal microscopy. Potential applications of
laser-polarized xenon interphase exchange NMR include measurements of in vivo
lung function in humans and characterization of gas chromatography columns.Comment: 14 pages of text, 4 figure
An experimental/analytical program to assess the utility of lidar for pollution monitoring
The development and demonstration of lidar techniques for the remote measurement of atmospheric constituents and transport processes in the lower troposphere was carried out. Particular emphasis was given to techniques for monitoring SO2 and particulates, the principal pollutants in power plant and industrial plumes. Data from a plume dispersion study conducted in Maryland during September and October 1976 were reduced, and a data base was assembled which is available to the scientific community for plume model verification. A UV Differential Absorption Lidar (DIAL) was built, and preliminary testing was done
Reliability improvements in tunable Pb1-xSnxSe diode lasers
Recent developments in the technology of Pb-salt diode lasers which have led to significant improvements in reliability and lifetime, and to improved operation at very long wavelengths are described. A combination of packaging and contacting-metallurgy improvements has led to diode lasers that are stable both in terms of temperature cycling and shelf-storage time. Lasers cycled over 500 times between 77 K and 300 K have exhibited no measurable changes in either electrical contact resistance or threshold current. Utilizing metallurgical contacting process, both lasers and experimental n-type and p-type bulk materials are shown to have electrical contact resistance values that are stable for shelf storage periods well in excess of one year. Problems and experiments which have led to devices with improved performance stability are discussed. Stable device configurations achieved for material compositions yielding lasers which operate continuously at wavelengths as long as 30.3 micrometers are described
Development of lead salt semiconductor lasers for the 9-17 micron spectral region
Improved diode lasers of Pb sub 1-x Sn sub x Se operating in the 9-17 micrometers spectral region were developed. The performance characteristics of the best lasers exceeded the contract goals of 500 microW/mode at T 30K in the 9-12 micrometers region and 200 microW/mode at T 18K in the 16-17 micrometers region. Increased reliability and device yields resulted from processing improvements which evolved from a series of diagnostic studies. By means of Auger electron spectroscopy, laser shelf storage degradation was shown to be characterized by the presence of In metal on the semiconductor crystal surfaces. Studies of various metal barrier layers between the crystals and the In metal led to the development of an improved metallurgical contacting technology which has resulted in devices with performance stability values exceeding the contract goal of a one year shelf life. Lasers cycled over 500 times between 300K and 77K were also shown to be stable. Studies on improved methods of fabricating striped geometry lasers indicated that good spectral mode characteristics resulted from lasers which stripe widths of 12 and 25 micrometers
Human chorionic gonadotropin isoforms in the diagnosis of ectopic pregnancy
This paper has set the scene for re-defining clinical chemistry data for the diagnosis of ectopic pregnancy. Indeed it has proved some assumptions on hCG levels to be false. Professor Iles was/is the principal investigator on these studies
Everyday and cosmo-multiculturalisms: doing diversity in gentrifying school communities
© 2015 Taylor & Francis. Gentrification is transforming the class and ethnic profile of urban communities across the world, and changing how people deal with social and cultural difference. This paper looks at some of the social consequences of gentrification in Sydney, Australia, focusing on local schools. It argues that in this urban Australian context, the influx of middle-class Anglo-Australians into traditionally working-class, migrant-dominated areas is significantly changing how people relate to each other within local schools, often fragmenting and dividing school communities. These shifts are intensified by the public policy of school choice, which has enabled some parents to bypass their local school for a more ‘desirable’ one. This paper presents a close local study of two schools within one gentrifying Sydney suburb, examining how the schools have become more polarised. In particular, we examine how this demographic polarisation has given rise to two distinct modes of ‘doing diversity’, namely, ‘everyday’ and ‘cosmo-multiculturalisms’. While the former is about daily, normalised encounters across difference, the latter is a form of multiculturalism based on strategic and learned ‘appreciation’ and consumption of difference, characteristic of gentrified communities
- …