3,080 research outputs found

    Geochronological challenges posed by continuously developing tectonometamorphic systems: insights from Rb–Sr mica ages from the Cycladic Blueschist Belt, Syros (Greece).

    Get PDF
    Is metamorphism and its causative tectonics best viewed as a series of punctuated events or as a continuum? This question is addressed through examination of the timing of exhumation of the Cycladic Blueschist Belt (CBB). The cause of scatter beyond analytical error in Rb–Sr geochronology was investigated using a suite of 39 phengite samples. Rb–Sr ages have been measured on phengite microsamples drilled from specific microstructures in thin sections of calcschists and metabasites from the CBB on Syros. The majority are from samples that have well-preserved blueschist facies mineral assemblages with limited greenschist facies overprint. The peak metamorphic temperatures involved are below the closure temperature for white mica so that crystallization ages are expected to be preserved. This is supported by the coexistence of different ages in microstructures of different relative age; in one sample phengite from the dominant extensional blueschist facies fabric preserves an age of 35 Ma while post-tectonic mica, millimetres away, has an age of 26 Ma. The results suggest that micro-sampling techniques linked to detailed microstructural analysis are critical to understanding the timing and duration of deformation in tectonometamorphic systems. North of the Serpentinite Belt in northern Syros, phengite Rb–Sr ages are generally between 53 and 46 Ma, comparable to previous dates from this area. South of the Serpentinite Belt phengite in blueschist facies assemblages associated with extensional fabrics linked to exhumation have ages that range from 42 Ma down to c. 30 Ma indicating that extensional deformation while still under blueschist facies conditions continued until 30 Ma. No age measurements on samples with unambiguous evidence of deformation under greenschist facies conditions were made; two rocks with greenschist facies assemblages gave phengite ages that overlap with the younger blueschist samples, suggesting blueschist facies phengite is preserved in these rocks. Two samples yielded ages below 27 Ma; one is from a post-tectonic microstructure, the other from a greenschist in which the fabric developed during earlier blueschist facies conditions. These ages are consistent with previous evidence of greenschist facies conditions from c. 25 Ma onwards. The data are consistent with a model of deformation that is continuous on a regional scale

    Not all risks are equal

    Get PDF

    Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss.

    Get PDF
    The COVID-19 pandemic is an extraordinary global emergency that has led to the implementation of unprecedented measures in order to stem the spread of the infection. Internationally, governments are enforcing measures such as travel bans, quarantine, isolation, and social distancing leading to an extended period of time at home. This has resulted in reductions in physical activity and changes in dietary intakes that have the potential to accelerate sarcopenia, a deterioration of muscle mass and function (more likely in older populations), as well as increases in body fat. These changes in body composition are associated with a number of chronic, lifestyle diseases including cardiovascular disease (CVD), diabetes, osteoporosis, frailty, cognitive decline, and depression. Furthermore, CVD, diabetes, and elevated body fat are associated with greater risk of COVID-19 infection and more severe symptomology, underscoring the importance of avoiding the development of such morbidities. Here we review mechanisms of sarcopenia and their relation to the current data on the effects of COVID-19 confinement on physical activity, dietary habits, sleep, and stress as well as extended bed rest due to COVID-19 hospitalization. The potential of these factors to lead to an increased likelihood of muscle loss and chronic disease will be discussed. By offering a number of home-based strategies including resistance exercise, higher protein intakes and supplementation, we can potentially guide public health authorities to avoid a lifestyle disease and rehabilitation crisis post-COVID-19. Such strategies may also serve as useful preventative measures for reducing the likelihood of sarcopenia in general and in the event of future periods of isolation

    The lymphocyte secretome from young adults enhances skeletal muscle proliferation and migration, but effects are attenuated in the secretome of older adults.

    Get PDF
    Older people experience skeletal muscle wasting, in part due to impaired proliferative capacity of quiescent skeletal muscle satellite cells which can be reversed by exposure to young blood. To investigate the role of immune cells in muscle regeneration, we isolated lymphocytes from whole blood of young and older healthy volunteers and cultured them with, or without, anti-CD3/CD28 activators to induce release of cytokines, interleukins, and growth factors into the media. The secreted proteins were collected to prepare a conditioned media, which was subsequently used to culture C2C12 myoblasts. The conditioned media from the activated young lymphocytes increased the rate of proliferation of myoblasts by around threefold (P < 0.005) and caused an approximate fourfold (P < 0.005) increase in migration compared with nonactivated lymphocyte control media. These responses were characterized by minimal myotube formation (2%), low fusion index (5%), low myosin heavy chain content, and substantial migration. In contrast, myoblasts treated with conditioned media from activated old lymphocytes exhibited a high degree of differentiation, and multi-nucleated myotube formation that was comparable to control conditions, thus showing no effect on proliferation or migration of myoblasts. These results indicate that secreted proteins from lymphocytes of young people enhance the muscle cell proliferation and migration, whereas secreted proteins from lymphocytes of older people may contribute to the attenuated skeletal muscle satellite cell proliferation and migration

    Anarchy in the UK: Detailed genetic analysis of worker reproduction in a naturally occurring British anarchistic honeybee, Apis mellifera, colony using DNA microsatellites

    Get PDF
    Anarchistic behaviour is a very rare phenotype of honeybee colonies. In an anarchistic colony, many workers’ sons are reared in the presence of the queen. Anarchy has previously been described in only two Australian colonies. Here we report on a first detailed genetic analysis of a British anarchistic colony. Male pupae were present in great abundance above the queen excluder, which was clearly indicative of extensive worker reproduction and is the hallmark of anarchy. Seventeen microsatellite loci were used to analyse these male pupae, allowing us to address whether all the males were indeed workers’ sons, and how many worker patrilines and individual workers produced them. In the sample, 95 of 96 of the males were definitely workers’ sons. Given that ≈ 1% of workers’ sons were genetically indistinguishable from queen’s sons, this suggests that workers do not move any queen-laid eggs between the part of the colony where the queen is present to the area above the queen excluder which the queen cannot enter. The colony had 16 patrilines, with an effective number of patrilines of 9.85. The 75 males that could be assigned with certainty to a patriline came from 7 patrilines, with an effective number of 4.21. They were the offspring of at least 19 workers. This is in contrast to the two previously studied Australian naturally occurring anarchist colonies, in which most of the workers’ sons were offspring of one patriline. The high number of patrilines producing males leads to a low mean relatedness between laying workers and males of the colony. We discuss the importance of studying such colonies in the understanding of worker policing and its evolution

    Frequent and Persistent PLCG1 Mutations in Sezary Cells Directly Enhance PLC gamma 1 Activity and Stimulate NF kappa B, AP-1, and NFAT Signaling

    Get PDF
    Phospholipase C Gamma 1 (PLCG1) is frequently mutated in primary cutaneous T-cell lymphoma (CTCL). This study functionally interrogated nine PLCG1 mutations (p.R48W, p.S312L, p.D342N, p.S345F, p.S520F, p.R1158H, p.E1163K, p.D1165H, and the in-frame indel p.VYEEDM1161V) identified in Sézary Syndrome, the leukemic variant of CTCL. The mutations were demonstrated in diagnostic samples and persisted in multiple tumor compartments over time, except in patients who achieved a complete clinical remission. In basal conditions, the majority of the mutations confer PLCγ1 gain-of-function activity through increased inositol phosphate production and the downstream activation of NFκB, AP-1, and NFAT transcriptional activity. Phosphorylation of the p.Y783 residue is essential for the proximal activity of wild-type PLCγ1, but we provide evidence that activating mutations do not require p.Y783 phosphorylation to stimulate downstream NFκB, NFAT, and AP-1 transcriptional activity. Finally, the gain-of-function effects associated with the p.VYEEDM1161V indel suggest that the C2 domain may have a role in regulating PLCγ1 activity. These data provide compelling evidence to support the development of therapeutic strategies targeting mutant PLCγ1

    Did female prisoners with mental disorders receive psychiatric treatment before imprisonment?

    Get PDF
    © 2015 Mundt et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BackgroundThroughout the world, high prevalence rates of mental disorders have been found in prison populations, especially in females. It has been suggested that these populations do not access psychiatric treatment. The aim of this study was to establish rates of psychiatric in- and outpatient treatments prior to imprisonment in female prisoners and to explore reasons for discontinuation of such treatments.Methods150 consecutively admitted female prisoners were interviewed in Berlin, Germany. Socio-demographic characteristics, mental disorders, and previous psychiatric in- and outpatient treatments were assessed by trained researchers. Open questions were used to explore reasons for ending previous psychiatric treatment.ResultsA vast majority of 99 prisoners (66%; 95% CI: 58¿73) of the total sample reported that they had previously been in psychiatric treatment, 80 (53%; 95 CI: 45¿61) in inpatient treatment, 62 (41%; 95 CI: 34¿49) in outpatient treatment and 42 (29%; 21¿39) in both in- and outpatient treatments. All prisoners with psychosis and 72% of the ones with any lifetime mental health disorder had been in previous treatment. The number of inpatient treatments and imprisonments were positively correlated (rho¿=¿0.27; p¿<¿0.01). Inpatient treatment was described as successfully completed by 56% (N¿=¿41) of those having given reasons for ending such treatment, whilst various reasons were reported for prematurely ending outpatient treatments.ConclusionThe data do not support the notion of a general `mental health treatment gap¿ in female prisoners. Although inpatient care is often successfully completed, repeated inpatient treatments are not linked with fewer imprisonments. Improved transition from inpatient to outpatient treatment and services that engage female prisoners to sustained outpatient treatments are needed

    Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands

    Get PDF
    "© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)

    Does hyperthermia constrain flight duration in a short-distance migrant?

    Get PDF
    While some migratory birds perform non-stop flights of over 11 000 km, many species only spend around 15% of the day in flight during migration, posing a question as to why flight times for many species are so short. Here, we test the idea that hyperthermia might constrain flight duration (FD) in a short-distance migrant using remote biologging technology to measure heart rate, hydrostatic pressure and body temperature in 19 migrating eider ducks (Somateria mollissima), a short-distance migrant. Our results reveal a stop-and-go migration strategy where migratory flights were frequent (14 flights day(−1)) and short (15.7 min), together with the fact that body temperature increases by 1°C, on average, during such flights, which equates to a rate of heat storage index (HSI) of 4°C h(−1). Furthermore, we could not find any evidence that short flights were limited by heart rate, together with the fact that the numerous stops could not be explained by the need to feed, as the frequency of dives and the time spent feeding were comparatively small during the migratory period. We thus conclude that hyperthermia appears to be the predominant determinant of the observed migration strategy, and suggest that such a physiological limitation to FD may also occur in other species. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’

    The transcriptional response of Caenorhabditis elegans to ivermectin exposure identifies novel genes involved in the response to reduced food intake

    Get PDF
    We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms
    corecore