628 research outputs found

    Periodic Optical Variability of Radio Detected Ultracool Dwarfs

    Get PDF
    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability and the nature of this variability remains unclear. Here we report on multi-epoch optical photometric monitoring of six radio detected dwarfs, spanning the \simM8 - L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hours of monitoring, delivering photometric precision as low as \sim0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513-46546, spanning a period of 5 years, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ±\pm 0.00005 hours. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary LP 349-25.Comment: Accepted to The Astrophysical Journal; 22 pages; 12 figure

    Physiotherapy and occupational therapy vs no therapy in mild to moderate Parkinson disease: a randomized clinical trial

    Get PDF
    IMPORTANCE It is unclear whether physiotherapy and occupational therapy are clinically effective and cost-effective in Parkinson disease (PD). OBJECTIVE To perform a large pragmatic randomized clinical trial to evaluate the clinical effectiveness of individualized physiotherapy and occupational therapy in PD. DESIGN, SETTING, AND PARTICIPANTS The PD REHAB Trial was a multicenter, open-label, parallel group, controlled efficacy trial. A total of 762 patients with mild to moderate PD were recruited from 38 sites across the United Kingdom. Recruitment took place between October 2009 and June 2012, with 15 months of follow-up. INTERVENTIONS Participants with limitations in activities of daily living (ADL) were randomized to physiotherapy and occupational therapy or no therapy. MAIN OUTCOMES AND MEASURES The primary outcome was the Nottingham Extended Activities of Daily Living (NEADL) Scale score at 3 months after randomization. Secondary outcomes were health-related quality of life (assessed by Parkinson Disease Questionnaire–39 and EuroQol-5D); adverse events; and caregiver quality of life. Outcomes were assessed before trial entry and then 3, 9, and 15 months after randomization. RESULTS Of the 762 patients included in the study (mean [SD] age, 70 [9.1] years), 381 received physiotherapy and occupational therapy and 381 received no therapy. At 3 months, there was no difference between groups in NEADL total score (difference, 0.5 points; 95%CI, −0.7 to 1.7; P = .41) or Parkinson Disease Questionnaire–39 summary index (0.007 points; 95%CI, −1.5 to 1.5; P = .99). The EuroQol-5D quotient was of borderline significance in favor of therapy (−0.03; 95%CI, −0.07 to −0.002; P = .04). The median therapist contact time was 4 visits of 58 minutes over 8 weeks. Repeated-measures analysis showed no difference in NEADL total score, but Parkinson Disease Questionnaire–39 summary index (diverging 1.6 points per annum; 95%CI, 0.47 to 2.62; P = .005) and EuroQol-5D score (0.02; 95%CI, 0.00007 to 0.03; P = .04) showed small differences in favor of therapy. There was no difference in adverse events. CONCLUSIONS AND RELEVANCE Physiotherapy and occupational therapy were not associated with immediate or medium-term clinically meaningful improvements in ADL or quality of life in mild to moderate PD. This evidence does not support the use of low-dose, patient-centered, goal-directed physiotherapy and occupational therapy in patients in the early stages of PD. Future research should explore the development and testing of more structured and intensive physical and occupational therapy programs in patients with all stages of PD

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO

    Get PDF
    The first simultaneous operation of the AURIGA detector and the LIGO observatory was an opportunity to explore real data, joint analysis methods between two very different types of gravitational wave detectors: resonant bars and interferometers. This paper describes a coincident gravitational wave burst search, where data from the LIGO interferometers are cross-correlated at the time of AURIGA candidate events to identify coherent transients. The analysis pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA candidate events and on the significance of the cross-correlation test in LIGO. The false alarm rate is estimated by introducing time shifts between data sets and the network detection efficiency is measured with simulated signals with power in the narrower AURIGA band. In the absence of a detection, we discuss how to set an upper limit on the rate of gravitational waves and to interpret it according to different source models. Due to the short amount of analyzed data and to the high rate of non-Gaussian transients in the detectors noise at the time, the relevance of this study is methodological: this was the first joint search for gravitational wave bursts among detectors with such different spectral sensitivity and the first opportunity for the resonant and interferometric communities to unify languages and techniques in the pursuit of their common goal.Comment: 18 pages, IOP, 12 EPS figure

    Search for gravitational waves from binary inspirals in S3 and S4 LIGO data

    Get PDF
    We report on a search for gravitational waves from the coalescence of compact binaries during the third and fourth LIGO science runs. The search focused on gravitational waves generated during the inspiral phase of the binary evolution. In our analysis, we considered three categories of compact binary systems, ordered by mass: (i) primordial black hole binaries with masses in the range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0 M(sun) in the third and fourth science runs, respectively. Although the detectors could probe to distances as far as tens of Mpc, no gravitational-wave signals were identified in the 1364 hours of data we analyzed. Assuming a binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4 M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9 yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure

    Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs

    Get PDF
    We present the results of a search for short-duration gravitational-wave bursts associated with 39 gamma-ray bursts (GRBs) detected by gamma-ray satellite experiments during LIGO's S2, S3, and S4 science runs. The search involves calculating the crosscorrelation between two interferometer data streams surrounding the GRB trigger time. We search for associated gravitational radiation from single GRBs, and also apply statistical tests to search for a gravitational-wave signature associated with the whole sample. For the sample examined, we find no evidence for the association of gravitational radiation with GRBs, either on a single-GRB basis or on a statistical basis. Simulating gravitational-wave bursts with sine-gaussian waveforms, we set upper limits on the root-sum-square of the gravitational-wave strain amplitude of such waveforms at the times of the GRB triggers. We also demonstrate how a sample of several GRBs can be used collectively to set constraints on population models. The small number of GRBs and the significant change in sensitivity of the detectors over the three runs, however, limits the usefulness of a population study for the S2, S3, and S4 runs. Finally, we discuss prospects for the search sensitivity for the ongoing S5 run, and beyond for the next generation of detectors.Comment: 24 pages, 10 figures, 14 tables; minor changes to text and Fig. 2; accepted by Phys. Rev.

    Searching for gravitational waves from known pulsars

    Get PDF
    We present upper limits on the amplitude of gravitational waves from 28 isolated pulsars using data from the second science run of LIGO. The results are also expressed as a constraint on the pulsars' equatorial ellipticities. We discuss a new way of presenting such ellipticity upper limits that takes account of the uncertainties of the pulsar moment of inertia. We also extend our previous method to search for known pulsars in binary systems, of which there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit
    corecore