2,295 research outputs found

    Deformation of an Elastic Beam on a Winkler Foundation

    Get PDF
    We present a simple model for geophysical systems involving sources of deformation, such as magmatic intrusions, supraglacial lakes, and the subsurface storage of CO 2 . We consider the idealised system of a uniform elastic layer overlying a localised region of constant pressure that is surrounded by a Winkler foundation composed of springs. We investigate the effect of source depth and foundation stiffness on the resulting displacement profiles at both the surface and the level of the source. The system is characterised by three key features: the maximum uplift, the maximum subsidence, and the distance to the point of zero displacement. For each of these we determine asymptotic scaling behaviour in the limits of a thin/thick layer and a soft/stiff foundation and form composite curves that allow specific parameter values to be determined from field data. Both two-dimensional and axisymmetric pressure patches are considered, and in the thin-layer limit we derive analytical solutions

    The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures

    Get PDF
    The protein databank now contains the structures of over 11,000 ligands bound to proteins. These structures are invaluable in applied areas such as structure-based drug design, but are also the substrate for understanding the energetics of intermolecular interactions with proteins. Despite their obvious importance, the careful analysis of ligands bound to protein structures lags behind the analysis of the protein structures themselves. We present an analysis of the geometry of ligands bound to proteins and highlight the role of small molecule crystal structures in enabling molecular modellers to critically evaluate a ligand model’s quality and investigate protein-induced strain

    Efficient glueball simulations on anisotropic lattices

    Full text link
    Monte Carlo results for the low-lying glueball spectrum using an improved, anisotropic action are presented. Ten simulations at lattice spacings ranging from 0.2 to 0.4 fm and two different anisotropies have been performed in order demonstrate the advantages of using coarse, anisotropic lattices to calculate glueball masses. Our determinations of the tensor (2++) and pseudovector (1+-) glueball masses are more accurate than previous Wilson action calculations.Comment: 43 pages, LaTeX (with revtex). 13 postscript figures. Submitted to Phys. Rev.

    Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold

    Get PDF
    AbstractPolyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) is a versatile nanocomposite biomaterial with growing applications as a bioscaffold for tissue engineering. Integration of synthetic implants with host tissue can be problematic but could be improved by topographical modifications. We describe optimization of POSS-PCU by dispersion of porogens (sodium bicarbonate (NaHCO3), sodium chloride (NaCl) and sucrose) onto the material surface, with the principle aim of increasing surface porosity, thus providing additional opportunities for improved cellular and vascular ingrowth. We assess the effect of the porogens on the material's mechanical strength, surface chemistry, wettability and cytocompatibilty. Surface porosity was characterized by scanning electron microscopy (SEM). There was no alteration in surface chemistry and wettability and only modest changes in mechanical properties were detected. The size of porogens correlated well with the porosity of the construct produced and larger porogens improved interconnectivity of spaces within constructs. Using primary human bronchial epithelial cells (HBECs) we demonstrate moderate in vitro cytocompatibility for all surface modifications; however, larger pores resulted in cellular aggregation. These cells were able to differentiate on POSS-PCU scaffolds. Implantation of the scaffold in vivo demonstrated that larger pore sizes favor cellular integration and vascular ingrowth. These experiments demonstrate that surface modification with large porogens can improve POSS-PCU nanocomposite scaffold integration and suggest the need to strike a balance between the non-porous surfaces required for epithelial coverage and the porous structure required for integration and vascularization of synthetic scaffolds in future construct design

    Thermal susceptibility of the Planck-LFI receivers

    Get PDF
    This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst . This paper describes the impact of the Planck Low Frequency Instrument front end physical temperature fluctuations on the output signal. The origin of thermal instabilities in the instrument are discussed, and an analytical model of their propagation and impact on the receivers signal is described. The experimental test setup dedicated to evaluate these effects during the instrument ground calibration is reported together with data analysis methods. Finally, main results obtained are discussed and compared to the requirements.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Journal of Instrumentation. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1088/1748-0221/4/12/T1201

    Seasonal influenza vaccine effectiveness in people with asthma: a national test-negative design case-control study

    Get PDF
    Financial support. The work was funded by the Chief Scientist Office of the Scottish Government under the grant (AUKCAR/14/03) and the NIHR–Health Technology Assessment (HTA) Programme (13/34/14) for the Seasonal Influenza Vaccination Effectiveness II (SIVE II) study. As principal investigator, C. R. S. received a grant for the SIVE-II project from the NIHR HTA. This work was carried out with the support of the Asthma UK Centre for Applied Research (AUK-AC-2012-01), the Farr Institute (MR/M501633/2), Health Data Research UK (an initiative funded by UK Research and Innovation, Department of Health and Social Care England and the devolved administrations and leading medical research charities), the European Union’s Horizon 2020 research and innovation programme (under grant agreement No 634446) and European Centre for Disease Prevention and Control (Influenza-Monitoring Vaccine Effectiveness). Acknowledgments. The authors thank and acknowledge all colleagues at the Asthma UK Centre for Applied Research for their support in this study. Disclaimer. The funding bodies had no role in the design of the study, review process, analysis, interpretation, or reporting of data. The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the Health Technology Assessment Programme, National Institute for Health Research (NIHR), National Health Service, or the Department of Health. Potential conflicts of interest. The authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.Peer reviewedPublisher PDFPublisher PD

    Expansion of Human Airway Basal Stem Cells and Their Differentiation as 3D Tracheospheres

    Get PDF
    Although basal cells function as human airway epithelial stem cells, analysis of these cells is limited by in vitro culture techniques that permit only minimal cell growth and differentiation. Here, we report a protocol that dramatically increases the long-term expansion of primary human airway basal cells while maintaining their genomic stability using 3T3-J2 fibroblast coculture and ROCK inhibition. We also describe techniques for the differentiation and imaging of these expanded airway stem cells as three-dimensional tracheospheres containing basal, ciliated, and mucosecretory cells. These procedures allow investigation of the airway epithelium under more physiologically relevant conditions than those found in undifferentiated monolayer cultures. Together these methods represent a novel platform for improved airway stem cell growth and differentiation that is compatible with high-throughput, high-content translational lung research as well as human airway tissue engineering and clinical cellular therapy

    Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers

    Get PDF
    The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20K and the back-end at 300K, and with an external input load cooled to 4K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and Astrophysic
    corecore