48 research outputs found

    Mechanisms Of Autonomic Control By The Insular Cortex In The Rat

    Get PDF
    The insular cortex (IC) has been proposed to act as visceral sensory and autonomic cortex. The mechanism of control by the IC, however, is not clear. The nature of insular cortical function in hypertension is also unknown.;Middle cerebral artery occlusion (MCAO) in Wistar rats has been shown to cause cortical infarction, including the IC, resulting in increases in sympathetic nerve discharge (SND). MCAO in the urethane anesthetized spontaneously hypertensive rat (SHR) resulted in decreases in arterial pressure (AP) and SND.;To determine if the autonomic effects of MCAO in the SHR and Wistar rat are due to insular damage, a lesion of the IC was made, using an excitotoxic amino acid. Increases in SND were observed in Wistar rats and decreases in SHR\u27s, similar to that seen following MCAO.;Systematic D,L homocysteate (DLH) injections into the IC of propofol-anesthetized Wistar rats resulted in a significant increase in AP and a significant decrease in HR and SND. DLH and lidocaine injections into the IC of conscious Wistar rats both resulted in a significant increase in AP. It was concluded that the IC of conscious Wistar rats has a tonic inhibitory output, while neural excitation is capable of eliciting pressor responses. The IC of SHR appeared to exert no tonic influence on AP.;Previous studies have shown sympathetic nerve responses to C stimulation are mediated by uncharacterized synapses within the lateral hypothalamic area (LHA) and ventrolateral medulla (VLM). Glutamate antagonist injection into the ipsilateral VLM blocked IC and LHA sympathetic responses. A non-NMDA receptor antagonist also blocked IC and LHA sympathetic responses, while an NMDA antagonist was ineffective.;Glutamate antagonist injection into the ipsilateral LHA blocked IC sympathetic nerve responses. NMDA antagonist injection also inhibited IC sympathetic responses, while the non-NMDA antagonist had no effect.;These studies provide the most conclusive evidence that the IC is critical to the autonomic disruptions following stroke. The IC may also play a role in the pathogenesis of hypertension. The IC appears to have a tonic sympatho-inhibitory influence in normotensive animals, though a sympatho-excitatory response is possible. The IC sympathetic effects are mediated by an NMDA glutamatergic synapse in the LHA and a non-NMDA synapse in the VLM

    tert-Butyl 6-methyl-2-oxo-4-[4-(trifluoro­meth­oxy)anilino]cyclo­hex-3-ene-1-carboxyl­ate

    Get PDF
    In the title compound, C19H22F3NO4, the dihedral angle between the benzene ring and the conjugated part of the enaminone ring is 42.5 (1)°. The ester substituent makes a dihedral angle of 81.3 (2)° with this latter moiety. The crystal structure is held together by strong N—H⋯O and weak C—H⋯O inter­molecular inter­actions. The enaminone ring is disordered over two orientations with relative occupancies of 0.794 (4) and 0.206 (4)

    3-(4-Chloro­anilino)-2,5-dimethyl­cyclo­hex-2-en-1-one

    Get PDF
    In the title compound, C14H16ClNO, the dihedral angle between the benzene ring and the conjugated part of the cyclo­hexene ring is 61.7 (2)°. Part of the cyclo­hexene ring and one of the attached methyl groups are disordered over two orientations with occupancies of 0.602 (7) and 0.398 (7). In addition, the crystal studied was a racemic twin [Flack parameter = 0.58 (4)]. In the crystal, the mol­ecules are linked into chains in the b-axis direction by inter­molecular N—H⋯O hydrogen bonds. C—H⋯O and C—H⋯Cl inter­actions are also observed

    2,5-Dimethyl-3-[4-(trifluoro­meth­oxy)anilino]­cyclo­hex-2-enone

    Get PDF
    In the title compound, C15H16F3NO2, the dihedral angle between the benzene ring and the conjugated part of the cyclo­hexene ring is 60.00 (8)°. The non-conjugated part of the cyclohexene ring and the trifluoro­methyl group are both disordered over two sets of sites with occupancies of 0.835 (2) and 0.165 (2). In the crystal, mol­ecules are linked into chains along [010] by inter­molecular N—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯O inter­actions also occur

    Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial

    Get PDF
    Background: Intraventricular haemorrhage is a subtype of intracerebral haemorrhage, with 50% mortality and serious disability for survivors. We aimed to test whether attempting to remove intraventricular haemorrhage with alteplase versus saline irrigation improved functional outcome. Methods: In this randomised, double-blinded, placebo-controlled, multiregional trial (CLEAR III), participants with a routinely placed extraventricular drain, in the intensive care unit with stable, non-traumatic intracerebral haemorrhage volume less than 30 mL, intraventricular haemorrhage obstructing the 3rd or 4th ventricles, and no underlying pathology were adaptively randomly assigned (1:1), via a web-based system to receive up to 12 doses, 8 h apart of 1 mg of alteplase or 0·9% saline via the extraventricular drain. The treating physician, clinical research staff, and participants were masked to treatment assignment. CT scans were obtained every 24 h throughout dosing. The primary efficacy outcome was good functional outcome, defined as a modified Rankin Scale score (mRS) of 3 or less at 180 days per central adjudication by blinded evaluators. This study is registered with ClinicalTrials.gov, NCT00784134. Findings: Between Sept 18, 2009, and Jan 13, 2015, 500 patients were randomised: 249 to the alteplase group and 251 to the saline group. 180-day follow-up data were available for analysis from 246 of 249 participants in the alteplase group and 245 of 251 participants in the placebo group. The primary efficacy outcome was similar in each group (good outcome in alteplase group 48% vs saline 45%; risk ratio [RR] 1·06 [95% CI 0·88–1·28; p=0·554]). A difference of 3·5% (RR 1·08 [95% CI 0·90–1·29], p=0·420) was found after adjustment for intraventricular haemorrhage size and thalamic intracerebral haemorrhage. At 180 days, the treatment group had lower case fatality (46 [18%] vs saline 73 [29%], hazard ratio 0·60 [95% CI 0·41–0·86], p=0·006), but a greater proportion with mRS 5 (42 [17%] vs 21 [9%]; RR 1·99 [95% CI 1·22–3·26], p=0·007). Ventriculitis (17 [7%] alteplase vs 31 [12%] saline; RR 0·55 [95% CI 0·31–0·97], p=0·048) and serious adverse events (114 [46%] alteplase vs 151 [60%] saline; RR 0·76 [95% CI 0·64–0·90], p=0·002) were less frequent with alteplase treatment. Symptomatic bleeding (six [2%] in the alteplase group vs five [2%] in the saline group; RR 1·21 [95% CI 0·37–3·91], p=0·771) was similar. Interpretation: In patients with intraventricular haemorrhage and a routine extraventricular drain, irrigation with alteplase did not substantially improve functional outcomes at the mRS 3 cutoff compared with irrigation with saline. Protocol-based use of alteplase with extraventricular drain seems safe. Future investigation is needed to determine whether a greater frequency of complete intraventricular haemorrhage removal via alteplase produces gains in functional status

    Defining failed induction of labor

    Get PDF
    BACKGROUND: While there are well-accepted standards for the diagnosis of arrested active-phase labor, the definition of a "failed" induction of labor remains less certain. One approach to diagnosing a failed induction is based on the duration of the latent phase. However, a standard for the minimum duration that the latent phase of a labor induction should continue, absent acute maternal or fetal indications for cesarean delivery, remains lacking. OBJECTIVE: The objective of this study was to determine the frequency of adverse maternal and perinatal outcomes as a function of the duration of the latent phase among nulliparous women undergoing labor induction. METHODS: This study is based on data from an obstetric cohort of women delivering at 25 U.S. hospitals from 2008-2011. Nulliparous women who had a term singleton gestation in the cephalic presentation were eligible for this analysis if they underwent a labor induction. Consistent with prior studies, the latent phase was determined to begin once cervical ripening had ended, oxytocin was initiated and rupture of membranes (ROM) had occurred, and was determined to end once 5 cm dilation was achieved. The frequencies of cesarean delivery, as well as of adverse maternal (e.g., cesarean delivery, postpartum hemorrhage, chorioamnionitis) and perinatal outcomes (e.g., a composite frequency of either seizures, sepsis, bone or nerve injury, encephalopathy, or death), were compared as a function of the duration of the latent phase (analyzed with time both as a continuous measure and categorized in 3-hour increments). RESULTS: A total of 10,677 women were available for analysis. In the vast majority (96.4%) of women, the active phase had been reached by 15 hours. The longer the duration of a woman's latent phase, the greater her chance of ultimately undergoing a cesarean delivery (P<0.001, for time both as a continuous and categorical independent variable), although more than forty percent of women whose latent phase lasted for 18 or more hours still had a vaginal delivery. Several maternal morbidities, such as postpartum hemorrhage (P < 0.001) and chorioamnionitis (P < 0.001), increased in frequency as the length of latent phase increased. Conversely, the frequencies of most adverse perinatal outcomes were statistically stable over time. CONCLUSION: The large majority of women undergoing labor induction will have entered the active phase by 15 hours after oxytocin has started and rupture of membranes has occurred. Maternal adverse outcomes become statistically more frequent with greater time in the latent phase, although the absolute increase in frequency is relatively small. These data suggest that cesarean delivery should not be undertaken during the latent phase prior to at least 15 hours after oxytocin and rupture of membranes have occurred. The decision to continue labor beyond this point should be individualized, and may take into account factors such as other evidence of labor progress

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore