564 research outputs found

    Gravitational torques in spiral galaxies: gas accretion as a driving mechanism of galactic evolution

    Get PDF
    The distribution of gravitational torques and bar strengths in the local Universe is derived from a detailed study of 163 galaxies observed in the near-infrared. The results are compared with numerical models for spiral galaxy evolution. It is found that the observed distribution of torques can be accounted for only with external accretion of gas onto spiral disks. Accretion is responsible for bar renewal - after the dissolution of primordial bars - as well as the maintenance of spiral structures. Models of isolated, non-accreting galaxies are ruled out. Moderate accretion rates do not explain the observational results: it is shown that galactic disks should double their mass in less than the Hubble time. The best fit is obtained if spiral galaxies are open systems, still forming today by continuous gas accretion, doubling their mass every 10 billion years.Comment: 4 pages, 2 figures, Astronomy and Astrophysics Letters (accepted

    Bars from the Inside Out: An HST Study of their Dusty Circumnuclear Regions

    Full text link
    The results of bar-driven mass inflow are directly observable in high-resolution HST observations of their circumnuclear regions. These observations reveal a wealth of structures dominated by dust lanes, often with a spiral-like morphology, and recent star formation. Recent work has shown that some of these structures are correlated with the presence or absence of a bar. I extend this work with an investigation of circumnuclear morphology as a function of bar strength for a sample of 48 galaxies with both measured bar strengths and ``structure maps'' computed from HST images. The structure maps for these galaxies, which have projected spatial resolutions of 2 - 15 pc, show that the fraction of galaxies with grand-design (GD) circumnuclear dust spirals increases significantly with bar strength, while tightly wound dust spirals are only present in the most axisymmetric galaxies. GD structure is only found at the centers of galaxies classified as SB(s) or SB(rs) and not SB(r). SB(s) galaxies on average have stronger bars than SB(r) galaxies. There is also a modest increase in the fraction of loosely wound dust spirals at later morphological types, which may reflect an increase in the fraction of galaxies with circumnuclear, gaseous disks. (abridged)Comment: 10 pages, 6 figures. To appear in "Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note" held June 7-12th, 2004 in Pilanesberg National Park, South Africa. Version with higher resolution figures is available at http://cfa-www.harvard.edu/~pmartini/professional/publications/safrica04.pd

    Comparison of bar strengths in active and non-active galaxies

    Full text link
    Bar strengths are compared between active and non-active galaxies for a sample of 43 barred galaxies. The relative bar torques are determined using a new technique (Buta and Block 2001), where maximum tangential forces are calculated in the bar region, normalized to the axisymmetric radial force field. We use JHK images of the 2 Micron All Sky Survey. We show a first clear empirical indication that the ellipticies of bars are correlated with the non-axisymmetric forces in the bar regions. We found that nuclear activity appears preferentially in those early type galaxies in which the maximum bar torques are weak and appear at quite large distances from the galactic center. Most suprisingly the galaxies with the strongest bars are non-active. Our results imply that the bulges may be important for the onset of nuclear activity, but that the correlation between the nuclear activity and the early type galaxies is not straightforward.Comment: MNRAS macro in tex format, 9 pages, 10 figure

    Grand Design and Flocculent Spirals in the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    Get PDF
    Spiral arm properties of 46 galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S4G) were measured at 3.6mu, where extinction is small and the old stars dominate. The sample includes flocculent, multiple arm, and grand design types with a wide range of Hubble and bar types. We find that most optically flocculent galaxies are also flocculent in the mid-IR because of star formation uncorrelated with stellar density waves, whereas multiple arm and grand design galaxies have underlying stellar waves. Arm-interarm contrasts increase from flocculent to multiple arm to grand design galaxies and with later Hubble types. Structure can be traced further out in the disk than in previous surveys. Some spirals peak at mid-radius while others continuously rise or fall, depending on Hubble and bar type. We find evidence for regular and symmetric modulations of the arm strength in NGC 4321. Bars tend to be long, high amplitude, and flat-profiled in early type spirals, with arm contrasts that decrease with radius beyond the end of the bar, and they tend to be short, low amplitude, and exponential-profiled in late Hubble types, with arm contrasts that are constant or increase with radius. Longer bars tend to have larger amplitudes and stronger arms.Comment: 31 pages, 14 figures, ApJ in pres

    Galaxy transmutations: The double ringed galaxy ESO 474-G26

    Full text link
    Surface photometry and a 21cm HI line spectrum of the giant double-ringed galaxy ESO 474-G26 are presented. The morphology of this system is unique among the 30,000 galaxies with >B15. Two almost orthogonal optical rings with diameters of 60 and 40 kpc surround the central body (assuming H0=70 km/s/Mpc). The outer one is an equatorial ring, while the inner ring lies in a nearly polar plane. The rings have blue optical colors typical of late-type spirals. Both appear to be rotating around the central galaxy, so that this system can be considered as a kinematically confirmed polar ring galaxy. Its observational characteristics are typical of galaxy merger remnants. Although the central object has a surface brightness distribution typical of elliptical galaxies, it has a higher surface brightness for its effective radius than ordinary ellipticals. Possible origins of this galaxy are discussed and numerical simulations are presented that illustrate the formation of the two rings in the merging process of two spiral galaxies, in which the observed appearance of ESO 474-G26 appears to be a transient stage.Comment: Accepted for publication in A&

    The Distribution of Maximum Relative Torques in Disk Galaxies

    Full text link
    The maximum ratio of the tangential force to the mean background radial force is a useful quantitative measure of the strength of nonaxisymmetric perturbations in disk galaxies. Here we consider the distribution of this ratio, called Qg, for a statistically well-defined sample of 180 spiral galaxies from the Ohio State University Bright Galaxy Survey and the Two Micron All-Sky Survey. Qg is derived from gravitational potentials inferred from near-infrared images under the assumptions of a constant mass-to-light ratio and an exponential vertical density law. In order to derive the most reliable maximum relative torques, orientation parameters based on blue-light isophotes are used to deproject the galaxies, and the more spherical shapes of bulges are taken into account using two-dimensional decompositions which allow for analytical fits to bulges, disks, and bars. Also, vertical scaleheights hz are derived by scaling the radial scalelengths hR from the two-dimensional decompositions allowing for the type dependence of hR/hz indicated by optical and near-infrared studies of edge-on spiral galaxies. The impact of dark matter is assessed using a "universal rotation curve" parametrization, and is found to be relatively insignificant for our sample. In agreement with a previous study by Block et al. (2002), the distribution of maximum relative gravitational torques is asymmetric towards large values and shows a deficiency of low Qg galaxies. However, due to the above refinements, our distribution shows more low Qg galaxies than Block et al. We also find a significant type-dependence in maximum relative gravitational torques, in the sense that Qg is lower on average in early-type spirals compared to late-type spirals.Comment: Accepted for publication in the Astronomical Journal, January 2004 issue (Latex, 39 pages + 17 figures, uses aastex.cls

    The Kinematically Measured Pattern Speeds of NGC 2523 and NGC 4245

    Full text link
    We have applied the Tremaine-Weinberg continuity equation method to derive the bar pattern speed in the SB(r)b galaxy NGC 2523 and the SB(r)0/a galaxy NGC 4245 using the Calcium Triplet absorption lines. These galaxies were selected because they have strong inner rings which can be used as independent tracers of the pattern speed. The pattern speed of NGC 2523 is 26.4 ±\pm 6.1 km s1^{-1} kpc1^{-1}, assuming an inclination of 49.7^{\circ} and a distance of 51.0 Mpc. The pattern speed of NGC 4245 is 75.5 ±\pm 31.3 km s1^{-1} kpc1^{-1}, assuming an inclination of 35.4^{\circ} and a distance of 12.6 Mpc. The ratio of the corotation radius to the bar radius of NGC 2523 and NGC 4245 is 1.4 ±\pm 0.3 and 1.1 ±\pm 0.5, respectively. These values place the bright inner rings near and slightly inside the corotation radius, as predicted by barred galaxy theory. Within the uncertainties, both galaxies are found to have fast bars that likely indicate dark halos of low central concentration. The photometric properties, bar strengths, and disk stabilities of both galaxies are also discussed.Comment: Accepted for publication in The Astronomical Journal, 11 figures, 2 table

    Structural disjoining potential for grain boundary premelting and grain coalescence from molecular-dynamics simulations

    Full text link
    We describe a molecular dynamics framework for the direct calculation of the short-ranged structural forces underlying grain-boundary premelting and grain-coalescence in solidification. The method is applied in a comparative study of (i) a Sigma 9 120 degress twist and (ii) a Sigma 9 {411} symmetric tilt boundary in a classical embedded-atom model of elemental Ni. Although both boundaries feature highly disordered structures near the melting point, the nature of the temperature dependence of the width of the disordered regions in these boundaries is qualitatively different. The former boundary displays behavior consistent with a logarithmically diverging premelted layer thickness as the melting temperature is approached from below, while the latter displays behavior featuring a finite grain-boundary width at the melting point. It is demonstrated that both types of behavior can be quantitatively described within a sharp-interface thermodynamic formalism involving a width-dependent interfacial free energy, referred to as the disjoining potential. The disjoining potential for boundary (i) is calculated to display a monotonic exponential dependence on width, while that of boundary (ii) features a weak attractive minimum. The results of this work are discussed in relation to recent simulation and theoretical studies of the thermodynamic forces underlying grain-boundary premelting.Comment: 24 pages, 8 figures, 1 tabl

    Evolution of spiral galaxies in modified gravity: II- Gas dynamics

    Get PDF
    The stability of spiral galaxies is compared in modified Newtonian Dynamics (MOND) and Newtonian dynamics with dark matter (DM). We extend our previous simulations that involved pure stellar discs without gas, to deal with the effects of gas dissipation and star formation. We also vary the interpolating function between the MOND and Newtonian regime. Bar formation is compared in both dynamics, from initial conditions identical in visible component. One first result is that the MOND galaxy evolution is not affected by the choice of the mu-function, it develops bars with the same frequency and strength. The choice of the mu-function significantly changes the equivalent DM models, in changing the dark matter to visible mass ratio and, therefore, changing the stability. The introduction of gas shortens the timescale for bar formation in the DM model, but is not significantly shortened in the MOND model. As a consequence, with gas, the MOND and DM bar frequency histograms are now more similar than without gas. The thickening of the plane occurs through vertical resonance with the bar and peanut formation, and even more quickly with gas. Since the mass gets more concentrated with gas, the radius of the peanut is smaller, and the appearance of the pseudo-bulge is more boxy. The bar strength difference is moderated by saturation, and feedback effects, like the bar weakening or destruction by gas inflow due to gravity torques. Averaged over a series of models representing the Hubble sequence, the MOND models have still more bars, and stronger bars, than the equivalent DM models, better fitting the observations. Gas inflows driven by bars produce accumulations at Lindblad resonances, and MOND models can reproduce observed morphologies quite well, as was found before in the Newtonian dynamics.Comment: 9 pages, 11 figures, accepted in A&

    The Extinction and Distance of Maffei 1

    Full text link
    We have obtained low- and high-resolution spectra of the core of the highly-reddened elliptical galaxy Maffei 1. From these data, we have obtained the first measurement of the Mg2 index, and have measured the velocity dispersion and radial velocity with improved accuracy. To evaluate the extinction, a correlation between the Mg2 index and effective V-I colour has been established for elliptical galaxies. Using a new method for correcting for effective wavelength shifts, we find A_V = 4.67 +/- 0.19 mag, which is lower by 0.4 mag than previously thought. To establish the distance, the Fundamental Plane for elliptical galaxies has been constructed in I. The velocity dispersion of Maffei 1, measured to be 186.8 +/- 7.4 km/s, in combination with modern wide-field photometry in I, leads to a distance of 2.92 +/- 0.37 Mpc. The Dn-sigma relation, which is independently calibrated, gives 3.08 +/- 0.85 Mpc and 3.23 +/- 0.67 Mpc from photometry in B and K`, respectively. The weighted mean of the three estimates is 3.01 +/- 0.30 Mpc. The distance and luminosity make Maffei 1 the nearest giant elliptical galaxy. The radial velocity of Maffei 1 is +66.4 +/- 5.0 km/s, significantly higher than the accepted value of -10 km/s. The Hubble distance corresponding to the mean velocity of Maffei 1, Maffei 2 and IC342 is 3.5 Mpc. Thus, it is unlikely that Maffei 1 has had any influence on Local Group dynamics
    corecore