14 research outputs found

    An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate

    Get PDF
    Understanding the potential thermal hazards of lithium-ion batteries (LIBs) during thermal runaway (TR) is helpful to assess the safety of LIB during storage, transport and use. This paper presents a comprehensive analysis of the thermal runaway (TR) characteristics of type 21700 cylindrical LIBs with a specific energy of 266 W∙h/kg. The batteries with both 30% state of charge (SOC) and 100% SOC were triggered to TR by uniform heating using a flexible heater in a laboratory environment. Three high definition cameras and one high-speed camera were placed to capture TR behavior and flame evolution from different viewpoints. Correlation between the heat release rate (HRR) and the mean flame height of turbulent jet diffusion flame were used to estimate the HRRs of LIBs. Additional characteristics of cell failure (for cells with 100% and 30% SOC) were also noted for comparison, including: number of objects ejected from the cell; sparks and subsequent jet fires. An approach has been developed to estimate the HRRs from TR triggered fires and results compared with previous HRR measurements for type 18650 cylindrical cells with a similar cathode composition

    A simplified mathematical model for heating-induced thermal runaway of lithium-ion batteries

    Get PDF
    The present study aims to develop a simplified mathematical model for the evolution of heating-induced thermal runaway (TR) of lithium-ion batteries (LIBs). This model only requires a minimum number of input parameters, and some of these unknown parameters can be obtained from accelerating rate calorimeter (ARC) tests and previous studies, removing the need for detailed measurements of heat flow of cell components by differential scanning calorimetry. The model was firstly verified by ARC tests for a commercial cylindrical 21700 cell for the prediction of the cell surface temperature evolution with time. It was further validated by uniform heating tests of 21700 cells conducted with flexible and nichrome-wire heaters, respectively. The validated model was finally used to investigate the critical ambient temperature that triggers battery TR. The predicted critical ambient temperature is between 127 °C and 128 °C. The model has been formulated as lumped 0D, axisymmetric 2D and full 3D to suit different heating and geometric arrangements and can be easily extended to predict the TR evolution of other LIBs with different geometric configurations and cathode materials. It can also be easily implemented into other computational fluid dynamics (CFD) code

    Combined numerical and experimental studies of 21700 lithium-ion battery thermal runaway induced by different thermal abuse

    Get PDF
    Combined numerical and experimental studies have been carried out to investigate thermal runaway (TR) of large format 21700 cylindrical lithium-ion battery (LIB) induced by different thermal abuse. Experiments were firstly conducted with the Extend Volume Accelerating Calorimetry (EV-ARC) using both the heat-wait-seek (HWS) protocol and under isothermal conditions. The kinetic parameters were derived from one of the HWS EV-ARC tests and implemented in the in-house modified computational fluid dynamics (CFD) code OpenFOAM. For the subsequent CFD simulations, the cell was treated as a 3-D block with anisotropic thermal conductivities. The model was verified by the remaining two HWS tests not used in the derivation of the kinetic parameters and validated with newly conducted isothermal EV-ARC tests. Further laboratory tests and model validation were also subsequently conducted using Kanthal wire heaters. The validated model was also used to fill the experimental gaps by predicting the onset temperature for TR in simulated EV-ARC environment, heat generation rate due to different abuse reactions, the influence of heating power and heating arrangement as well as the effect of heat dissipation on TR evolution and the implications for battery thermal management. The present study has identified the TR onset temperature of the considered 21700 LIB to be between 131 and 132 °C. The predicted heat generation rate due to the decompositions of SEI and anode were found to follow similar patterns while that from cathode increase sharply near the maximum cell surface temperature, indicating the possibility of delaying TR onset temperature by optimising the cathode material. The time to maximum cell surface temperature decreases rapidly with the increase of the heating power

    Characterizing and predicting 21700 NMC lithium-ion battery thermal runaway induced by nail penetration

    Get PDF
    Combined numerical and experimental studies are conducted to characterise 21700 cylindrical lithium-ion battery (LIB) thermal runaway (TR) induced by nail penetration. Both radial and axial penetrations are considered for 4.8 Ah 21700 NMC cell under 100% state of charge. Heat generation from the decomposition of the cell component materials are analysed. The maximum cell surface temperature rise and time to reach it in both types of penetration tests are compared. Snapshots from the video footages captured by three high definition and one high speed cameras shade light on the dynamic processes of spark ejection and flame evolution. A generic predictive tool is developed within the frame of the in-house version of open-source computational fluid dynamics code OpenFOAM for nail induced TR. The code treats the cell as a lumped block with anisotropic thermal conductivities and considers heat generation due to nail induced internal short circuit resistance, exothermic decomposition reactions and heat dissipation through convective and radiative heat transfer. Validation with the current measurements shows promising agreement. The predictions also provide insight on the magnitudes of heat generation due to internal short circuit resistance, decompositions of solid electrolyte interphase layer (SEI), anode, cathode and electrolyte. Parametric studies further quantify the effects of cell internal short circuit resistance, contact resistance between the nail and cell, convective heat transfer coefficient and cell surface emissivity on TR evolution

    Overview of ERRA A1 on Carbon Capture and Storage

    No full text
    The iNTeg-Risk ERRA A1 on carbon capture and storage will be described with a focus on the aspects which can be generalised to other emerging risks. This includes two new methodologies which were trialled by the ERRA (the DyPASI methodology for identifying atypical events which was developed in ERRA C4; and life-cycle approaches using the iNTeg-Risk LCA guidance). It aIso includes a new methodology which was developed in ERRA A1 for including the time dimension in a risk assessment. Other generalisable aspects of the work done in the ERRA will aIso be included, for example work which has been done on risk communication for CCS, knowledge gaps, and KPIs. Knowledge gaps relevant to the regulation of CCS will be particularly covered. The work will a Iso be put in the context of the iNTeg-Risk ERMF

    Dynamic Procedure for Atypical Scenarios Identification (DyPASI): A new systematic HAZID tool

    No full text
    The availability of a hazard identification methodology based on early warnings is a crucial factor in the identification of emerging risks. In the present study, a specific method named Dynamic Procedure for Atypical Scenarios Identification (DyPASI) was conceived as a development of bow-tie identification techniques. The main aim of the methodology is to provide a comprehensive hazard identification of the industrial process analysed, joined to a process of continuous improvement of the results of the assessment. DyPASI is a method for the continuous systematization of information from early signals of risk related to past events. The technique provides a support to the identification and assessment of atypical potential accident scenarios related to the substances, the equipment and the site considered, capturing available early warnings or risk notions. DyPASI features as a tool to support emerging risk management process, having the potentiality to contribute to an integrated approach aimed at breaking " vicious circles" , helping to trigger a gradual process of identification and assimilation of previously unrecognised atypical scenarios

    How can emerging risk areas learn from a consideration of past "Atypical Events" ?

    No full text
    Some of the key points from iNTeg-Risk ERRA C4 will be described, with an emphasis on what points can be generalised to emerging risk in general. These will cover two main facets: The first line of discussion covers how many times does an atypical event need to occur before it is no longer considered atypical and how does one then convince an established industry to change it's view ? A succession of vapour cloud explosions are used to illustrate this point. The second part will look at a range of atypical events and examine common threads among the contributing factors that often are seen with atypical events. Managing these factors would be a starting point for managing generic unknown or emerging risks

    Numerical and experimental characterisation of high energy density 21700 lithium-ion battery fires

    No full text
    High energy density lithium-ion batteries (LIBs) are well suited for electrical vehicle applications to facilitate extended driving range. However, the associated fire hazards are of concern. Insight is required to aid the development of protective and mitigation measures. The present study is focused on 4.8 Ah 21700 cylindrical LiNixCoyMnzO (NMC) LIBs at 100% state of charge (SOC) with the aim to develop a viable predictive tool for simulating LIB fires, quantifying the heat release rate and temperature evolution during LIB thermal runaway (TR). To aid the model development and provide input parameters, thermal abuse tests were conducted in extended volume accelerating rate calorimetry (EV-ARC) and cone calorimetry. Some cells were instrumented with inserted temperature probe to facilitate in-situ measurements of both cell internal and surface temperatures. The mean peak values of the heat release rate, cell surface and internal temperatures were experimentally found to be 3.6 kW, 753 °C and 1080 °C, respectively. An analytical model has been developed to predict cell LIB internal pressure evolution following vent opening. The model uses the measured cell internal temperature and EV-ARC canister pressure as input data. Its predictions serve as boundary condition in the three-dimensional computational fluid dynamics (CFD) simulation of TR induced fire using opensource code OpenFOAM. The predicted transient heat release rate compare favourably with the measurements in the cone calorimetry tests. Predictions have also been conducted for an open cluster to assess the likelihood of TR propagation in the absence of cell side rupture. The present modelling approach can serve as a useful tool to assess the thermal and environment hazards of TR induced fires and aid design optimisation of mitigation measures in enclosed cell clusters/modules
    corecore