982 research outputs found

    Conformationally-Locked C-Glycosides: Tuning Aglycone Interactions for Optimal Cheperone Behaviour in Gaucher Fibroblasts

    Get PDF
    A series of conformationally locked C-glycosides based on the 3-aminopyrano[3,2-b]pyrrol-2(1H)-one (APP) scaffold has been synthesized. The key step involved a totally stereocontrolled C-Michael addition of a serine-equivalent C-nucleophile to tri-O-benzyl-2-nitro-D-galactal, previously published by the authors. Stereoselective transformations of the Michael adduct allowed us the synthesis of compounds with mono- or diantennated aglycone moieties and different topologies. In vitro screening showed highly selective inhibition of bovine liver β-glucosidase/β-galactosidase and specific inhibition of human β-glucocerebrosidase among lysosomal glycosidases for compounds bearing palmitoyl chains in the aglycone, with a marked dependence of the inhibition potency upon their number and location. Molecular dynamics simulations highlighted the paramount importance of an optimal orientation of the hydrophobic substituent to warrant efficient non-glycone interactions, which are critical for the binding affinity. The results provide a rationale for the strong decrease of the inhibition potency of APP compounds on going from neutral to acidic pH. The best candidate was found to behave as pharmacological chaperone in Gaucher fibroblasts with homozygous N370S and F213I mutations, with enzyme activity enhancements similar to those encountered for the reference compound AmbroxolMinisterio de Economía y Competitividad CTQ2012-36365, SAF2013-44021-RJunta de Andalucía FQM-1467European Union Seventh Framework Programme FP7-People-2012-CI

    Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies

    Get PDF
    The recent severe acute respiratory syndrome, known as Coronavirus Disease 2019 (COVID-19) has spread so much rapidly and severely to induce World Health Organization (WHO) to declare a state of emergency over the new coronavirus SARS-CoV-2 pandemic. While several countries have chosen the almost complete lock-down for slowing down SARS-CoV-2 spread, the scientific community is called to respond to the devastating outbreak by identifying new tools for diagnosis and treatment of the dangerous COVID-19. With this aim, we performed an in silico comparative modeling analysis, which allows gaining new insights into the main conformational changes occurring in the SARS-CoV-2 spike protein, at the level of the receptor-binding domain (RBD), along interactions with human cells angiotensin-converting enzyme 2 (ACE2) receptor, that favor human cell invasion. Furthermore, our analysis provides (1) an ideal pipeline to identify already characterized antibodies that might target SARS-CoV-2 spike RBD, aiming to prevent interactions with the human ACE2, and (2) instructions for building new possible neutralizing antibodies, according to chemical/physical space restraints and complementary determining regions (CDR) mutagenesis of the identified existing antibodies. The proposed antibodies show in silico high affinity for SARS-CoV-2 spike RBD and can be used as reference antibodies also for building new high-affinity antibodies against present and future coronaviruses able to invade human cells through interactions of their spike proteins with the human ACE2. More in general, our analysis provides indications for the set-up of the right biological molecular context for investigating spike RBD–ACE2 interactions for the development of new vaccines, diagnostic kits, and other treatments based on the targeting of SARS-CoV-2 spike protein

    MIMAC: MIcro-tpc MAtrix of Chambers for dark matter directional detection

    Full text link
    Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from neutrons, the ultimate background for dark matter direct detection. This strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed in the last years an original prototype detector based on the direct coupling of large pixelized micromegas with a special developed fast self-triggered electronics showing the feasibility of a new generation of directional detectors. The first bi-chamber prototype has been installed at Modane, underground laboratory in June 2012. The first undergournd background events, the gain stability and calibration are shown. The first spectrum of nuclear recoils showing 3D tracks coming from the radon progeny is presented.Comment: Proceedings of the 4th International Conference on Directional Dark Matter Detection CYGNUS2013, held in Toyoma (Japan), June 201

    Anticancer and antibacterial potential of robust Ruthenium(II) arene complexes regulated by choice of α-diimine and halide ligands

    Get PDF
    Several complexes of general formula [Ru(halide)(η6-p-cymene)(α-diimine)]+, in the form of nitrate, triflate and hexafluorophosphate salts, including a newly synthesized iodide compound, were investigated as potential anticancer drugs and bactericides. NMR and UV–Vis studies evidenced remarkable stability of the complexes in water and cell culture medium. In general, the complexes displayed strong cytotoxicity against A2780 and A549 cancer cell lines with IC50 values in the low micromolar range, and one complex (RUCYN) emerged as the most promising one, with a significant selectivity compared to the non-cancerous HEK293 cell line. A variable affinity of the complexes for BSA and DNA binding was ascertained by spectrophotometry/fluorimetry, circular dichroism, electrophoresis and viscometry. The performance of RUCYN appears associated to enhanced cell internalization, favored by two cyclohexyl substituents, rather than to specific interaction with the evaluated biomolecules. The chloride/iodide replacement, in one case, led to increased cellular uptake and cytotoxicity at the expense of selectivity, and tuned DNA binding towards intercalation. Complexes with iodide or a valproate bioactive fragment exhibited the best antimicrobial profiles

    In Vitro Antibacterial and Anti-Inflammatory Activity of Arctostaphylos uva-ursi Leaf Extract against Cutibacterium acnes

    Get PDF
    Cutibacterium acnes (C. acnes) is the main causative agent of acne vulgaris. The study aims to evaluate the antimicrobial activity of a natural product, Arctostaphylos uva-ursi leaf extract, against C. acnes. Preliminary chemical-physical characterization of the extract was carried out by means of FT-IR, TGA and XPS analyses. Skin permeation kinetics of the extract conveyed by a toning lotion was studied in vitro by Franz diffusion cell, monitoring the permeated arbutin (as the target component of the extract) and the total phenols by HPLC and UV-visible spectrophotometry, respectively. Antimicrobial activity and time-killing assays were performed to evaluate the effects of Arctostaphylos uva-ursi leaf extract against planktonic C. acnes. The influence of different Arctostaphylos uva-ursi leaf extract concentrations on the biofilm biomass inhibition and degradation was evaluated by the crystal violet (CV) method. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test was used to determine the viability of immortalized human keratinocytes (HaCaT) after exposure to Arctostaphylos uva-ursi leaf extract for 24 and 48 h. Levels of interleukin (IL)-1 beta, IL-6, IL-8 and tumour necrosis factor (TNF)-alpha were quantified after HaCaT cells cotreatment with Arctostaphylos uva-ursi leaf extract and heat-killed C. acnes. The minimum inhibitory concentration (MIC) which exerted a bacteriostatic action on 90% of planktonic C. acnes (MIC90) was 0.6 mg/mL. Furthermore, MIC and sub-MIC concentrations influenced the biofilm formation phases, recording a percentage of inhibition that exceeded 50 and 40% at 0.6 and 0.3 mg/mL. Arctostaphylos uva-ursi leaf extract disrupted biofilm biomass of 57 and 45% at the same concentrations mentioned above. Active Arctostaphylos uva-ursi leaf extract doses did not affect the viability of HaCaT cells. On the other hand, at 1.25 and 0.6 mg/mL, complete inhibition of the secretion of pro-inflammatory cytokines was recorded. Taken together, these results indicate that Arctostaphylos uva-ursi leaf extract could represent a natural product to counter the virulence of C. acnes, representing a new alternative therapeutic option for the treatment of acne vulgaris

    Cosmological zoo -- accelerating models with dark energy

    Get PDF
    ecent observations of type Ia supernovae indicate that the Universe is in an accelerating phase of expansion. The fundamental quest in theoretical cosmology is to identify the origin of this phenomenon. In principle there are two possibilities: 1) the presence of matter which violates the strong energy condition (a substantial form of dark energy), 2) modified Friedmann equations (Cardassian models -- a non-substantial form of dark matter). We classify all these models in terms of 2-dimensional dynamical systems of the Newtonian type. We search for generic properties of the models. It is achieved with the help of Peixoto's theorem for dynamical system on the Poincar{\'e} sphere. We find that the notion of structural stability can be useful to distinguish the generic cases of evolutional paths with acceleration. We find that, while the Λ\LambdaCDM models and phantom models are typical accelerating models, the cosmological models with bouncing phase are non-generic in the space of all planar dynamical systems. We derive the universal shape of potential function which gives rise to presently accelerating models. Our results show explicitly the advantages of using a potential function (instead of the equation of state) to probe the origin of the present acceleration. We argue that simplicity and genericity are the best guide in understanding our Universe and its acceleration.Comment: RevTeX4, 23 pages, 10 figure

    Dark Matter Directionality Detection performance of the Micromegas-based μ\muTPC-MIMAC detector

    Full text link
    Directional Dark Matter Detection (DDMD) can open a new signature for Weakly Massive Interacting Particles (WIMPs) Dark Matter. The directional signature provides in addition, an unique way to overcome the neutron and neutrino backgrounds. In order to get the directional signature, the DDM detectors should be sensitive to low nuclear energy recoils in the keV range and have an angular resolution better than 20∘20^{\circ}. We have performed experiments with low energy (<30 keV<30\,\mathrm{keV}) ion beam facilities to measure the angular distribution of nuclear recoil tracks in a MIMAC detector prototype. In this paper, we study angular spreads with respect to the electron drift direction (0∘0^{\circ} incident angle) of Fluorine nuclear tracks in this low energy range, and show nuclear recoil angle reconstruction produced by a monoenergetic neutron field experiment. We find that a high-gain systematic effect leads to a high angular resolution along the electron drift direction. The measured angular distribution is impacted by diffusion, and space charge or ion feedback effects, which can be corrected for by an asymmetry factor observed in the flash-ADC profile. The estimated angular resolution of the 0∘0^{\circ} incident ion is better than 15∘15^{\circ} at 1010 keV kinetic energy and agrees with the simulations within 2020%. The distributions from the nuclear recoils have been compared with simulated results based on a modified Garfield++ code. Our study shows that protons would be a more adapted target than heavier nuclei for DDMD of light WIMPs. We demonstrate that directional signature from the Galactic halo origin of a Dark Matter WIMP signal is experimentally achievable, with a deep understanding of the operating conditions of a low pressure detector with its diffusion mechanism.Comment: 19 pages, 12 figure

    Sub MeV Particles Detection and Identification in the MUNU detector ((1)ISN, IN2P3/CNRS-UJF, Grenoble, France, (2)Institut de Physique, Neuch\^atel, Switzerland, (3) INFN, Padova Italy, (4) Physik-Institut, Z\"{u}rich, Switzerland)

    Full text link
    We report on the performance of a 1 m3^{3} TPC filled with CF4_{4} at 3 bar, immersed in liquid scintillator and viewed by photomultipliers. Particle detection, event identification and localization achieved by measuring both the current signal and the scintillation light are presented. Particular features of α\alpha particle detection are also discussed. Finally, the 54{54}Mn photopeak, reconstructed from the Compton scattering and recoil angle is shown.Comment: Latex, 19 pages, 20 figure
    • …
    corecore