11 research outputs found

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    No full text
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved

    Calibration of the photon spectrometer PHOS of the ALICE experiment

    No full text
    The procedure for the energy calibration of the high granularity electromagnetic calorimeter PHOS of the ALICE experiment is presented. The methods used to perform the relative gain calibration, to evaluate the geometrical alignment and the corresponding correction of the absolute energy scale, to obtain the nonlinearity correction coefficients and finally, to calculate the time-dependent calibration corrections, are discussed and illustrated by the PHOS performance in proton-proton (pp) collisions at s=13 TeV. After applying all corrections, the achieved mass resolutions for π0 and η mesons for pT > 1.7 GeV/c are σm π0 = 4.56 ± 0.03 MeV/c2 and σm η = 15.3 ± 1.0 MeV/c2, respectively. © 2019 CERN for the benefit of the Alice collaboration.

    Two-and three-pion quantum statistics correlations in Pb-Pb collisions at root S-NN=2.76 TeV at the CERN Large Hadron Collider

    No full text
    Correlations induced by quantum statistics are sensitive to the spatiotemporal extent as well as dynamics of particle-emitting sources in heavy-ion collisions. In addition, such correlations can be used to search for the presence of a coherent component of pion production. Two- and three-pion correlations of same and mixed charge are measured at low relative momentum to estimate the coherent fraction of charged pions in Pb-Pb collisions at root S-NN = 2.76 TeV at the CERN Large Hadron Collider with ALICE. The genuine three-pion quantum statistics correlation is found to be suppressed relative to the two-pion correlation based on the assumption of fully chaotic pion emission. The suppression is observed to decrease with triplet momentum. The observed suppression at low triplet momentum may correspond to a coherent fraction in charged-pion emission of 23% +/- 8%

    Two- and three-pion quantum statistics correlations in Pb-Pb collisions at root S-NN=2.76 TeV at the CERN Large Hadron Collider

    No full text
    Correlations induced by quantum statistics are sensitive to the spatiotemporal extent as well as dynamics of particle-emitting sources in heavy-ion collisions. In addition, such correlations can be used to search for the presence of a coherent component of pion production. Two- and three-pion correlations of same and mixed charge are measured at low relative momentum to estimate the coherent fraction of charged pions in Pb-Pb collisions at root S-NN = 2.76 TeV at the CERN Large Hadron Collider with ALICE. The genuine three-pion quantum statistics correlation is found to be suppressed relative to the two-pion correlation based on the assumption of fully chaotic pion emission. The suppression is observed to decrease with triplet momentum. The observed suppression at low triplet momentum may correspond to a coherent fraction in charged-pion emission of 23% +/- 8%

    Measurement of charged jet suppression in Pb-Pb collisions at root s(NN)=2.76 TeV

    No full text
    20143NSFC; National Natural Science Foundation of China; Helmholtz Associatio

    J/\u3a8 production and nuclear effects in p-Pb collisions at 1asNN=5.02 TeV

    No full text
    Inclusive J/\u3a8 production has been studied with the ALICE detector in p-Pb collisions at the nucleon-nucleon center of mass energy 1asNN = 5.02TeV at the CERN LHC. The measurement is performed in the center of mass rapidity domains 2.03 < ycms < 3.53 and ?4.46 < ycms < ?2.96, down to zero transverse momentum, studying the \u3bc+\u3bc? decay mode. In this paper, the J/\u3a8 production cross section and the nuclear modification factor RpPb for the rapidities under study are presented. While at forward rapidity, corresponding to the proton direction, a suppression of the J/\u3a8 yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. The ratio of the forward and backward yields is also measured differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results

    Erratum to: Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at s = 7 TeV (The European Physical Journal C, (2017), 77, 8, (569), 10.1140/epjc/s10052-017-5129-6)

    No full text
    We have identified a mistake in how Fig. 1 is referenced in the text of the article Eur. Phys. J. C 77 (2017) no. 8, 569 which affected three paragraphs of the results section. The corrected three paragraphs as well as the unmodified accompanying figure are reproduced in this document with the correct labeling. In addition, an editing issue led to a missing acknowledgements section. The missing section is reproduced at the end of this document in the manner in which it should have appeared in the published article. © 2019, CERN for the benefit of the ALICE collaboration

    Underlying Event Measurements In Pp Collisions At √s = 0:9 And 7 Tev With The Alice Experiment At The Lhc

    No full text
    2012

    Measurement of pion, kaon and proton production in proton–proton collisions at √s = 7 TeV

    No full text
    The measurement of primary π±\pi ^{\pm }π±, K±K^{\pm }K±, ppp and p{\overline{{p}}}p¯ production at mid-rapidity (|y| &lt;|y|&amp;lt; 0.5) in proton–proton collisions at s\sqrt{s}s=== 7 TeV performed with a large ion collider experiment at the large hadron collider (LHC) is reported. Particle identification is performed using the specific ionisation energy-loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/ccc for pions, from 0.2 up to 6 GeV/ccc for kaons and from 0.3 up to 6 GeV/ccc for protons. The measured spectra and particle ratios are compared with quantum chromodynamics-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies. © 2015, CERN for the benefit of the ALICE collaboration

    Energy dependence of exclusive J/ photoproduction off protons in ultra-peripheral p-Pb collisions at NN=5.02 TeV

    Get PDF
    The ALICE Collaboration has measured the energy dependence of exclusive photoproduction of J / \u3c8 vector mesons off proton targets in ultra\u2013peripheral p\u2013Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02 TeV. The e + e - and \u3bc + \u3bc - decay channels are used to measure the cross section as a function of the rapidity of the J / \u3c8 in the range - 2.5 &lt; y&lt; 2.7 , corresponding to an energy in the \u3b3p centre-of-mass in the interval 40 &lt; W \u3b3p &lt; 550 GeV. The measurements, which are consistent with a power law dependence of the exclusive J / \u3c8 photoproduction cross section, are compared to previous results from HERA and the LHC and to several theoretical models. They are found to be compatible with previous measurements
    corecore