120 research outputs found

    Depletion of mammalian target of rapamycin (mTOR) via siRNA mediated knockdown leads to stabilization of β-catenin and elicits distinct features of cardiomyocyte hypertrophy

    Get PDF
    AbstractCardiac myocyte growth is under differential control of mammalian target of rapamycin (mTOR) and glycogen-synthase-kinase-3β (GSK3β). Whereas active GSK3β negatively regulates growth and down-regulates cellular protein synthesis, activation of the mTOR pathway promotes protein expression and cell growth. Here we report that depletion of mTOR via siRNA mediated knockdown causes marked down-regulation of GSK3β protein in cardiac myocytes. As a result, GSK3β target protein β-catenin becomes stabilized and translocates into the nucleus. Moreover, mTOR knockdown leads to increase in cardiac myocyte surface area and produces an up-regulation of the fetal gene program. Our findings suggest a new type of convergence of mTOR and GSK3β activities, indicating that GSK3β-dependent stabilization of β-catenin in cardiac myocytes is influenced by mTOR

    Incidental finding of a giant intracardiac angioma infiltrating both ventricles in a 35-year-old woman: a case report

    Get PDF
    Background: Primary cardiac tumors are rare and often asymptomatic or present with unspecific symptoms. Benign cardiac tumors of vascular origin are especially rare, with only few existing data in the literature. Case presentation: A 35-year-old Caucasian female patient presented to our department with an asymptomatic giant intracardiac angioma infiltrating both ventricles. Evaluation of this tumor involved electrocardiography, echocardiography, cardiac magnetic resonance imaging, coronary angiography, an open myocardial biopsy, and histological examination of the resected specimen. Because our patient was asymptomatic, she was managed conservatively with regular follow-up. We discuss the treatment options available in comparison with similar cases. Conclusion: Diagnosis and therapy of benign cardiac tumors, especially of asymptomatic lesions, can be a challenge. There is no evidence available to help in the management of such patients. An extensive evaluation is needed with different imaging modalities, and case-specific decisions should be made that involve experts in cardiology, cardio-oncology, and heart surgery

    First Study of Combined Blazar Light Curves with FACT and HAWC

    Full text link
    For studying variable sources like blazars, it is crucial to achieve unbiased monitoring, either with dedicated telescopes in pointing mode or survey instruments. At TeV energies, the High Altitude Water Cherenkov (HAWC) observatory monitors approximately two thirds of the sky every day. It uses the water Cherenkov technique, which provides an excellent duty cycle independent of weather and season. The First G-APD Cherenkov Telescope (FACT) monitors a small sample of sources with better sensitivity, using the imaging air Cherenkov technique. Thanks to its camera with silicon-based photosensors, FACT features an excellent detector performance and stability and extends its observations to times with strong moonlight, increasing the duty cycle compared to other imaging air Cherenkov telescopes. As FACT and HAWC have overlapping energy ranges, a joint study can exploit the longer daily coverage given that the observatories' locations are offset by 5.3 hours. Furthermore, the better sensitivity of FACT adds a finer resolution of features on hour-long time scales, while the continuous duty cycle of HAWC ensures evenly sampled long-term coverage. Thus, the two instruments complement each other to provide a more complete picture of blazar variability. In this presentation, the first joint study of light curves from the two instruments will be shown, correlating long-term measurements with daily sampling between air and water Cherenkov telescopes. The presented results focus on the study of the variability of the bright blazars Mrk 421 and Mrk 501 during the last two years featuring various flaring activities.Comment: 6 pages, 2 figures. Contribution to the 6th International Symposium on High Energy Gamma-Ray Astronomy (Gamma2016), Heidelberg, Germany. To be published in the AIP Conference Proceeding

    Fast assessment of long axis strain with standard cardiovascular magnetic resonance: a validation study of a novel parameter with reference values

    Get PDF
    Background: Assessment of longitudinal function with cardiovascular magnetic resonance (CMR) is limited to measurement of systolic excursion of the mitral annulus (MAPSE) or elaborate strain imaging modalities. The aim of this study was to develop a fast assessable parameter for the measurement of long axis strain (LAS) with CMR. Methods: 40 healthy volunteers and 125 patients with different forms of cardiomyopathy were retrospectively analyzed. Four different approaches for the assessment of LAS with CMR measuring the distance between the LV apex and a line connecting the origins of the mitral valve leaflets in enddiastole and endsystole were evaluated. Values for LAS were calculated according to the strain formula. Results: LAS derived from the distance of the epicardial apical border to the midpoint of the line connecting the mitral valve insertion points (LAS-epi/mid) proved to be the most reliable parameter for the assessment of LAS among the different approaches. LAS-epi/mid displayed the highest sensitivity (81.6 %) and specificity (97.5 %), furthermore showing the best correlation with feature tracking (FTI) derived transmural longitudinal strain (r = 0.85). Moreover, LAS-epi/mid was non-inferior to FTI in discriminating controls from patients (Area under the curve (AUC) = 0.95 vs. 0.94, p = NS). The time required for analysis of LAS-epi/mid was significantly shorter than for FTI (67 ± 8 s vs. 180 ± 14 s, p < 0.0001). Additionally, LAS-epi/mid performed significantly better than MAPSE (Delta AUC = 0.09; p < 0.005) and the ejection fraction (Delta AUC = 0.11; p = 0.0002). Reference values were derived from 234 selected healthy volunteers. Mean value for LAS-epi/mid was −17.1 ± 2.3 %. Mean values for men were significantly lower compared to women (−16.5 ± 2.2 vs. -17.9 ± 2.1 %; p < 0.0001), while LAS decreased with age. Conclusions: LAS-epi/mid is a novel and fast assessable parameter for the analysis of global longitudinal function with non-inferiority compared to transmural longitudinal strain

    Spatial heterogeneity promotes coexistence of rock-paper-scissor metacommunities

    Full text link
    The rock-paper-scissor game -- which is characterized by three strategies R,P,S, satisfying the non-transitive relations S excludes P, P excludes R, and R excludes S -- serves as a simple prototype for studying more complex non-transitive systems. For well-mixed systems where interactions result in fitness reductions of the losers exceeding fitness gains of the winners, classical theory predicts that two strategies go extinct. The effects of spatial heterogeneity and dispersal rates on this outcome are analyzed using a general framework for evolutionary games in patchy landscapes. The analysis reveals that coexistence is determined by the rates at which dominant strategies invade a landscape occupied by the subordinate strategy (e.g. rock invades a landscape occupied by scissors) and the rates at which subordinate strategies get excluded in a landscape occupied by the dominant strategy (e.g. scissor gets excluded in a landscape occupied by rock). These invasion and exclusion rates correspond to eigenvalues of the linearized dynamics near single strategy equilibria. Coexistence occurs when the product of the invasion rates exceeds the product of the exclusion rates. Provided there is sufficient spatial variation in payoffs, the analysis identifies a critical dispersal rate d∗d^* required for regional persistence. For dispersal rates below d∗d^*, the product of the invasion rates exceed the product of the exclusion rates and the rock-paper-scissor metacommunities persist regionally despite being extinction prone locally. For dispersal rates above d∗d^*, the product of the exclusion rates exceed the product of the invasion rates and the strategies are extinction prone. These results highlight the delicate interplay between spatial heterogeneity and dispersal in mediating long-term outcomes for evolutionary games.Comment: 31pages, 5 figure

    Quantification of myocardial deformation in children by cardiovascular magnetic resonance feature tracking: determination of reference values for left ventricular strain and strain rate

    Get PDF
    Background: The objective assessment of global and regional cardiac function in children has shown to be clinically relevant but is challenging to conduct. Cardiovascular magnetic resonance (CMR) has emerged as a valuable diagnostic modality especially in patients with cardiomyopathy or congenital heart disease. However, data on the normal cardiac deformation in children assessed by CMR is lacking at present. Thus, the aim of this study was to provide reference values for cardiac strain and strain rate in children and adolescents derived from CMR feature tracking (FT) measurements. Methods: In this binational study, eighty children and adolescents (age 0.4–18.0 years, 41 male, 39 female) free from cardiac diseases from two centers underwent CMR in 1.5 T whole-body scanners in supine position. Global peak radial, circumferential and longitudinal systolic strains as well as the corresponding early peak diastolic strain rates were assessed applying FT on short axis as well as 3- and 4-chamber views of standard cine steady-state free precession images. Results: The difference between genders yielded no significance for all assessed strains. Yet, all strains showed a significant parabolic relation to age and an even stronger one to body surface area (BSA). Therefore, BSA-specific reference values were determined using a polynomial regression model. The apical cardiac segments featured significant higher peak circumferential but lower peak radial systolic strains than the midventricular and basal segments (all p < 0.001). Conclusions: The assessment of cardiac deformation by CMR-FT is feasible in children. This is the first CMR study providing specific reference values for FT-derived strain and strain rate in the pediatric age range

    Prognostic value of novel imaging parameters derived from standard cardiovascular magnetic resonance in high risk patients with systemic light chain amyloidosis

    Get PDF
    Background: The differentiated assessment of functional parameters besides morphological changes is essential for the evaluation of prognosis in systemic immunoglobulin light chain (AL) amyloidosis. Methods: Seventy-four subjects with AL amyloidosis and presence of late gadolinium enhancement (LGE) pattern typical for cardiac amyloidosis were analyzed. Long axis strain (LAS) and myocardial contraction fraction (MCF), as well as morphological and functional markers, were measured. The primary endpoint was death, while death and heart transplantation served as a composite secondary endpoint. Results: After a median follow-up of 41 months, 29 out of 74 patients died and 10 received a heart transplant. Left ventricular (LV) functional parameters were reduced in patients, who met the composite endpoint (LV ejection fraction 51% vs. 61%, LAS − 6.9% vs − 10%, GLS − 12% vs − 15% and MCF 42% vs. 69%; p &lt;  0.001 for all). In unadjusted univariate analysis, LAS (HR = 1.05, p &lt;  0.001) and MCF (HR = 0.96, p &lt;  0.001) were associated with reduced transplant-free survival. Kaplan-Meier analyses showed a significantly lower event-free survival in patients with reduced MCF. MCF and LAS performed best to identify high risk patients for secondary endpoint (Log-rank test p &lt;  0.001) in a combined model. Using sequential Cox regression analysis, the addition of LAS and MCF to LV ejection fraction led to a significant increase in the predictive power of the model (χ2 (df = 1) = 28.2, p &lt;  0.001). Conclusions: LAS and MCF as routinely available and robust CMR-derived parameters predict outcome in LGE positive AL amyloidosis. Patients with impaired LV function in combination with reduced LAS and MCF are at the highest risk for death and heart transplantation
    • …
    corecore