355 research outputs found
Measure of precursor electron density profiles of laser launched radiative shocks
We have studied the dynamics of strong radiative shocks generated with the
high-energy subnanosecond iodine laser at Prague Asterix Laser System facilityComment: with small correction in Fig.1
The L1157-B1 astrochemical laboratory: testing the origin of DCN
L1157-B1 is the brightest shocked region of the large-scale molecular
outflow, considered the prototype of chemically rich outflows, being the ideal
laboratory to study how shocks affect the molecular gas. Several deuterated
molecules have been previously detected with the IRAM 30m, most of them formed
on grain mantles and then released into the gas phase due to the shock. We aim
to observationally investigate the role of the different chemical processes at
work that lead to formation the of DCN and test the predictions of the chemical
models for its formation. We performed high-angular resolution observations
with NOEMA of the DCN(2-1) and H13CN(2-1) lines to compute the deuterated
fraction, Dfrac(HCN). We detected emission of DCN(2-1) and H13CN(2-1) arising
from L1157-B1 shock. Dfrac(HCN) is ~4x10 and given the uncertainties, we
did not find significant variations across the bow-shock. Contrary to HDCO,
whose emission delineates the region of impact between the jet and the ambient
material, DCN is more widespread and not limited to the impact region. This is
consistent with the idea that gas-phase chemistry is playing a major role in
the deuteration of HCN in the head of the bow-shock, where HDCO is undetected
as it is a product of grain-surface chemistry. The spectra of DCN and H13CN
match the spectral signature of the outflow cavity walls, suggesting that their
emission result from shocked gas. The analysis of the time dependent gas-grain
chemical model UCL-CHEM coupled with a C-type shock model shows that the
observed Dfrac(HCN) is reached during the post-shock phase, matching the
dynamical timescale of the shock. Our results indicate that the presence of DCN
in L1157-B1 is a combination of gas-phase chemistry that produces the
widespread DCN emission, dominating in the head of the bow-shock, and
sputtering from grain mantles toward the jet impact region.Comment: Accepted for publication in A&A. 7 pages, 5 Figures, 1 Tabl
Miniature shock tube for laser driven shocks
International audienceWe describe in this paper the design of a miniature shock tube (smaller than 1 cm3) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside XUV emission spectroscopy. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory Astrophysics"
The B1 shock in the L1157 outflow as seen at high spatial resolution
We present high spatial resolution (750 AU at 250 pc) maps of the B1 shock in
the blue lobe of the L1157 outflow in four lines: CS (3-2), CH3OH (3_K-2_K),
HC3N (16-15) and p-H2CO (2_02-3_01). The combined analysis of the morphology
and spectral profiles has shown that the highest velocity gas is confined in a
few compact (~ 5 arcsec) bullets while the lowest velocity gas traces the wall
of the gas cavity excavated by the shock expansion. A large velocity gradient
model applied to the CS (3-2) and (2-1) lines provides an upper limit of 10^6
cm^-3 to the averaged gas density in B1 and a range of 5x10^3< n(H2)< 5x10^5
cm^-3 for the density of the high velocity bullets. The origin of the bullets
is still uncertain: they could be the result of local instabilities produced by
the interaction of the jet with the ambient medium or could be clump already
present in the ambient medium that are excited and accelerated by the expanding
outflow. The column densities of the observed species can be reproduced
qualitatively by the presence in B1 of a C-type shock and only models where the
gas reaches temperatures of at least 4000 K can reproduce the observed HC3N
column density.Comment: 13 pages, 12 figure
Deuteration as an evolutionary tracer in massive-star formation
Theory predicts, and observations confirm, that the column density ratio of a
molecule containing D to its counterpart containing H can be used as an
evolutionary tracer in the low-mass star formation process. Since it remains
unclear if the high-mass star formation process is a scaled-up version of the
low-mass one, we investigated whether the relation between deuteration and
evolution can be applied to the high-mass regime. With the IRAM-30m telescope,
we observed rotational transitions of N2D+ and N2H+ and derived the deuterated
fraction in 27 cores within massive star-forming regions understood to
represent different evolutionary stages of the massive-star formation process.
Results. Our results clearly indicate that the abundance of N2D+ is higher at
the pre-stellar/cluster stage, then drops during the formation of the
protostellar object(s) as in the low-mass regime, remaining relatively constant
during the ultra-compact HII region phase. The objects with the highest
fractional abundance of N2D+ are starless cores with properties very similar to
typical pre-stellar cores of lower mass. The abundance of N2D+ is lower in
objects with higher gas temperatures as in the low-mass case but does not seem
to depend on gas turbulence. Our results indicate that the N2D+-to-N2H+ column
density ratio can be used as an evolutionary indicator in both low- and
high-mass star formation, and that the physical conditions influencing the
abundance of deuterated species likely evolve similarly during the processes
that lead to the formation of both low- and high-mass stars.Comment: Accepted by A&AL, 4 pages, 2 figures, 2 appendices (one for Tables,
one for additional figures
Broad N2H+ emission towards the protostellar shock L1157-B1
We present the first detection of N2H+ towards a low-mass protostellar
outflow, namely the L1157-B1 shock, at about 0.1 pc from the protostellar
cocoon. The detection was obtained with the IRAM 30-m antenna. We observed
emission at 93 GHz due to the J = 1-0 hyperfine lines. The analysis of the
emission coupled with the HIFI CHESS multiline CO observations leads to the
conclusion that the observed N2H+(1-0) line originates from the dense (> 10^5
cm-3) gas associated with the large (20-25 arcsec) cavities opened by the
protostellar wind. We find a N2H+ column density of few 10^12 cm-2
corresponding to an abundance of (2-8) 10^-9. The N2H+ abundance can be matched
by a model of quiescent gas evolved for more than 10^4 yr, i.e. for more than
the shock kinematical age (about 2000 yr). Modelling of C-shocks confirms that
the abundance of N2H+ is not increased by the passage of the shock. In summary,
N2H+ is a fossil record of the pre-shock gas, formed when the density of the
gas was around 10^4 cm-3, and then further compressed and accelerated by the
shock.Comment: ApJ, in pres
Mid-J CO Emission in Nearby Seyfert Galaxies
We study for the first time the complete sub-millimeter spectra (450 GHz to
1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier
Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup =
4 to 12) is the most prominent spectral feature in this range. These CO lines
probe warm molecular gas that can be heated by ultraviolet photons, shocks, or
X-rays originated in the active galactic nucleus or in young star-forming
regions. In these proceedings we investigate the physical origin of the CO
emission using the averaged CO spectral line energy distribution (SLED) of six
Seyfert galaxies. We use a radiative transfer model assuming an isothermal
homogeneous medium to estimate the molecular gas conditions. We also compare
this CO SLED with the predictions of photon and X-ray dominated region (PDR and
XDR) models.Comment: Proceedings of the Torus Workshop 2012 held at the University of
Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A.
Alonso-Herrero (eds.); 6 pages, 3 figure
- …