64 research outputs found

    Star formation in infrared bright and infrared faint starburst interacting galaxies

    Get PDF
    Short wavelength IUE spectra of Arp 248b and UGC 8315N are combined with optical spectra and interpreted using a combination of spectrum synthesis and spectral diagnostics to place constraints on the massive star populations of the central regions of these galaxies and to deduce information about the star formation histories in the last 10(exp 8) years. The authors find that both galaxies have substantial fractions of their optical light coming from massive stars and that Arp 248b may be dominated in the UV by WR stars. The UV spectra are dominated by radiation from evolved massive stars and the authors place and age on the burst in Arp 248b of a few tens of millions of years

    A multiwavelength survey of interacting galaxies

    Get PDF
    Galaxy-galaxy collisions are known to produce drastic changes in morphology and, in many cases, enhance the level of star formation activity in galaxies. In order to better quantify the effects that interactions have on the star formation characteristics of galaxies the authors undertook a multiwavelength survey of a large sample of interacting disk-type galaxies. The sample is optically-selected, the inclusion of systems having been based upon the presence of unusual morphological features--such as tidal tails, plumes, rings, warped disks--suggestive of tidal interaction. The sample is composed of about 115 systems, most of which are spiral-spiral pairs, with a few spiral-elliptical pairs and a few merging systems (see Bushouse 1986 for more details of the sample selection). This sample has now been studied in the optical, infrared, and radio regimes, including optical spectra and H alpha images, near-infrared photometry and imaging, far-infrared photometry, H I 21 cm emission-line measurements, Very Large Array (VLA) 20 cm maps, and CO emission-line measurements. This paper presents an overview and comparison of the results of the optical, infrared and CO surveys. With these data the authors can compare the far-infrared and CO properties of the galaxies with the classic optical and radio indicators of star formation activity and thereby determine what, if any, relationships exist between star formation activity and the far-infrared and CO properties of the galaxies

    Ultraluminous infrared galaxies: mergers of sub-L* galaxies?

    Get PDF
    A sample of 27 low-redshift, mostly cool, ultraluminous infrared galaxies (ULIRGs) has been imaged at 1.6 μm with the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). The majority (67%) of the sample's galaxies are multiple-nucleus galaxies with projected separations of up to 17 kpc, and the rest of the sample (33%) are single-nucleus galaxies, as determined by the NICMOS angular resolution limit. The average observed, integrated (host+nucleus) H magnitude of our HST H sample ULIRGs is -24.3, slightly above that of an L* galaxy (MH = -24.2), and 52% of the sample's galaxies have sub-L* luminosities. The ULIRGs in the HST H sample are not generated as a result of the merging of two luminous (i.e., ≥L*) spiral galaxies. Instead, the interactions and mergers occur in general between two, or in some cases more, less massive sub-L* (0.3-0.5L*) galaxies. Only one out of the 49 nuclei identified in the entire HST H sample has the properties of a bright quasar-like nucleus. On average, the brightest nuclei in the HST H sample galaxies (i.e., cool ULIRGs) are 1.2 mag fainter than warm ULIRGs and low-luminosity Bright Quasar Survey quasars (BQS QSOs) and 2.6 mag fainter than high-luminosity BQS QSOs. Since the progenitor galaxies involved in the merger are sub-L* galaxies, the mass of the central black hole in these ULIRGs would be only about (1-2) × 107 M☉, if the bulge-to-black hole mass ratio of nearby galaxies holds for ULIRGs. The estimated mass of the central black hole is similar to that of nearby Seyfert 2 galaxies but at least 1 order of magnitude lower than the massive black holes thought to be located at the center of high-luminosity QSOs. Massive nuclear starbursts with constant star formation rates of 10-40 M☉ yr-1 could contribute significantly to the nuclear H-band flux and are consistent with the observed nuclear H-band magnitudes of the ULIRGs in the HST H sample. An evolutionary merging scenario is proposed for the generation of the different types of ULIRGs and QSOs on the basis of the masses of the progenitors involved in the merging process. According to this scenario, cool ULIRGs would be the end product of the merging of two or more low-mass (0.3L*-0.5L*) disk galaxies. Warm ULIRGs and low-luminosity QSOs would be generated by a merger involving intermediate-mass (0.5 L*) disk galaxies. Under this scenario, warm ULIRGs could still be the dust-enshrouded phases of UV-bright low-luminosity QSOs, but cool ULIRGs, which are most ULIRGs, would not evolve into QSOs

    Optical Imaging of Very Luminous Infrared Galaxy Systems: Photometric Properties and Late Evolution

    Full text link
    A sample of 19 low redshift (0.03<<z<<0.07) very luminous infrared galaxy (VLIRG: 1011L<10^{11}L_\odot< L[8-1000 μ\mum] <1012L < 10^{12} L_\odot) systems (30 galaxies) has been imaged in BB, VV, and II. These objects cover a luminosity range that is key to linking the most luminous infrared galaxies with the population of galaxies at large. We have obtained photometry for all of these VLIRG systems, the individual galaxies (when detached), and their nuclei, and the relative behavior of these classes has been studied in optical color-magnitude diagrams. The photometric properties of the sample are also compared with previously studied samples of ULIRGs. The mean observed photometric properties of VLIRG and ULIRG samples, considered as a whole, are indistinguishable at optical wavelengths. This suggests that not only ULIRG, but also the more numerous population of VLIRGs, have similar rest-frame optical photometric properties as the submillimeter galaxies (SMG), reinforcing the connection between low-{\it z} LIRGs -- high-{\it z} SMGs. When the nuclei of the {\it young} and {\it old} interacting systems are considered separately, some differences between the VLIRG and the ULIRG samples are found. In particular, the old VLIRGs are less luminous and redder than old ULIRG systems. If confirmed with larger samples, this behavior suggests that the late-stage evolution is different for VLIRGs and ULIRGs. Specifically, as suggested from spectroscopic data, the present photometric observations support the idea that the activity during the late phases of VLIRG evolution is dominated by starbursts, while a higher proportion of ULIRGs could evolve into a QSO type of object.Comment: 27 pages, 5 figures (degraded to reduce space). Figures 1 and 2 are multiple page figures (i.e. Fig 1a,b and Fig2a-g

    WFC3 Image Calibration and Reduction Software

    Get PDF
    Abstract. Standard WFC3 image processing consists of the calwf3 task, which removes instrumental signatures from the images, and multidrizzle, which corrects images for geometric distortion and combines dithered sets of exposures. In addition, the aXe software package is used off-line to perform spectral extraction and calibration of WFC3 grism data. We present an overview of the standard WFC3 pipeline processing and calibration, including the status of calwf3 and multidrizzle. Reasons for reprocessing data outside the pipeline environment are also discussed

    HST Observations of the Serendipitous X-ray Companion to Mrk 273: Cluster at z=0.46?

    Get PDF
    We have used HST I-band images to identify Mrk 273X, the very unusual high-redshift X-ray-luminous Seyfert 2 galaxy found by ROSAT in the same field-of-view as Mrk 273. We have measured the photometric properties of Mrk 273X and have also analyzed the luminosity distribution of the faint galaxy population seen in the HST image. The luminosity of the galaxy and the properties of the surrounding environment suggest that Mrk 273X is the brightest galaxy in a relatively poor cluster at a redshift near 0.46. Its off-center location in the cluster and the presence of other galaxy groupings in the HST image may indicate that this is a dynamically young cluster on the verge of merging with its neighboring clusters. We find that Mrk 273X is a bright featureless elliptical galaxy with no evidence for a disk. It follows the de Vaucouleurs (r^{1/4}) surface brightness law very well over a range of 8 magnitudes. Though the surface brightness profile does not appear to be dominated by the AGN, the galaxy has very blue colors that do appear to be produced by the AGN. Mrk 273X is most similar to the IC 5063 class of active galaxies --- a hybrid Sy 2 / powerful radio galaxy.Comment: Accepted for publication in the Astrophysical Journal. 8 pages, including 4 postscript figures. Uses emulateapj.sty and psfig.sty. Higher quality version of Figure 1 is available at http://rings.gsfc.nasa.gov/~borne/fig1-markgals.gi

    An Algorithm to Mitigate Charge Migration Effects in Data from the Near Infrared Imager and Slitless Spectrograph on the James Webb Space Telescope

    Full text link
    We present an algorithm that mitigates the effects of charge migration due to the "brighter-fatter effect'' (BFE) that occurs for highly illuminated stars in the Teledyne HAWAII-2RG detectors used in the NIRCam, NIRISS, and NIRSpec science instruments aboard the James Webb Space Telescope (JWST). The impact of this effect is most significant for photometry and spectrophotometry of bright stars in data for which the point spread function (PSF) is undersampled, which is the case for several observing modes of the NIRISS instrument. The main impact of the BFE to NIRISS data is incorrect count rate determinations for pixels in the central regions of PSFs of bright stars due to jump detections that are caused by charge migration from peak pixels to surrounding pixels. The effect is especially significant for bright compact sources in resampled, distortion-free images produced by the drizzle algorithm: quantitatively, apparent flux losses of >> 50% can occur in such images due to the BFE. We describe the algorithm of the "charge_migration'' mitigation step that has been implemented in version 10.0 of the operational JWST calibration pipeline as of Dec 5, 2023. We illustrate the impact of this step in terms of the resulting improvements of the precision of imaging photometry of point sources. The algorithm renders the effects of the BFE on photometry and surface brightness measurements to stay within 1%.Comment: 21 pages, 12 figures, published in PAS

    NIRCAM image simulations for NGST wavefront sensing

    Get PDF
    The Next Generation Space Telescope (NGST) will be a segmented, deployable, infrared-optimized 6.5m space telescope. Its active primary segments will be aligned, co-phased, and then fine-tuned in order to deliver image quality sufficient for the telescope's intended scientific goals. Wavefront sensing used to drive this tuning will come from the analysis of focussed and defocussed images taken with its near-IR science camera, NIRCAM. There is a pressing need to verify that this will be possible with the near-IR detectors that are still under development for NGST. We create simulated NIRCAM images to test the maintenance phase of this plan. Our simulations incorporate Poisson and electronics read noise, and are designed to be able to include various detector and electronics non-linearities. We present our first such simulation, using known or predicted properties of HAWAII HgCdTe focal plane array detectors. Detector effects characterized by the Independent Detector Testing Laboratory will be included as they become available. Simulating InSb detectors can also be done within this framework in future. We generate Point-Spread Functions (PSF's) for a segmented aperture geometry with various wavefront aberrations, and convolve this with typical galaxy backgrounds and stellar foregrounds. We then simulate up-the-ramp (MULTIACCUM in HST parlance) exposures with cosmic ray hits. We pass these images through the HST NICMOS `CALNICA' calibration task to filter out cosmic ray hits. The final images are to be fed to wavefront sensing software, in order to find the ranges of exposure times, filter bandpass, defocus, and calibration star magnitude required to keep the NGST image within its specifications

    Multiwavelength Observations of Sgr A*. II. 2019 July 21 and 26

    Full text link
    We report on the final two days of a multiwavelength campaign of Sgr A* observing in the radio, submillimeter, infrared, and X-ray bands in July 2019. Sgr A* was remarkably active, showing multiple flaring events across the electromagnetic spectrum. We detect a transient 35\sim35-minute periodicity feature in Spitzer Space Telescope light curves on 21 July 2019. Time-delayed emission was detected in ALMA light curves, suggesting a hotspot within the accretion flow on a stable orbit. On the same night, we observe a decreased flux in the submillimeter light curve following an X-ray flare detected by the Chandra X-ray Observatory and model the feature with an adiabatically expanding synchrotron hotspot occulting the accretion flow. The event is produced by a plasma 0.55 RS0.55~R_{\text{S}} in radius with an electron spectrum p=2.84p=2.84. It is threaded by a 130\sim130 Gauss magnetic field and expands at 0.6%0.6\% the speed of light. Finally, we reveal an unambiguous flare in the infrared, submillimeter, and radio, demonstrating that the variable emission is intrinsically linked. We jointly fit the radio and submillimeter light curves using an adiabatically expanding synchrotron hotspot and find it is produced by a plasma with an electron spectrum p=0.59p=0.59, 187187 Gauss magnetic field, and radius 0.47 RS0.47~R_{\text{S}} that expands at 0.029c0.029c. In both cases, the uncertainty in the appropriate lower and upper electron energy bounds may inflate the derived equipartition field strengths by a factor of 2 or more. Our results confirm that both synchrotron- and adiabatic-cooling processes are involved in the variable emission's evolution at submillimeter and infrared wavelengths.Comment: 24 pages, 13 figures, accepted to The Astrophysical Journal. Comments welcome! Paper I can be found here: arXiv:2107.0968

    The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts for 0.2-2 microns wavelength

    Get PDF
    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {\mu}m in wavelength at 0.07-0.15" FWHM resolution and 0.090" Multidrizzled pixels to depths of AB\simeq 26.0-27.0 mag (5-{\sigma}) for point sources, and AB\simeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15" FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to AB\simeq 25-26 mag from the UV to the near-IR, respectively.Comment: 51 pages, 71 figures Accepted to ApJS 2011.01.2
    corecore