193 research outputs found

    Identification of Novel Feline Paramyxoviruses in Guignas (Leopardus guigna) from Chile

    Get PDF
    The family of paramyxoviruses has received growing attention as several new species have been identified recently, notably two different clusters in domestic cats, designated as feline morbillivirus (FeMV) and feline paramyxovirus (FPaV). Their phylogenetic origin and whether wild felids also harbor these viruses are currently unknown. Kidney samples from 35 guignas (Leopardus guigna), a wild felid from Chile, were investigated for paramyxoviruses using consensus-RT-PCR. In addition, thirteen serum samples of guignas were screened for the presence of FeMV-specific antibodies by an immunofluorescence assay (IFA). Viral RNA was detected in 31% of the kidney samples. Phylogenetic analyses revealed two well-supported clusters, related to isolates from domestic cats, rodents and bats. No significant histopathology changes were recorded in infected guignas. Serology identified two samples which were positive for FeMV-specific antibodies. Our study highlights the diversity of paramyxovirus infections in felids with special emphasis on guignas from Chile

    Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?

    Full text link
    There is considerable evidence for some form of charge ordering on the hole-doped stripes in the cuprates, mainly associated with the low-temperature tetragonal phase, but with some evidence for either charge density waves or a flux phase, which is a form of dynamic charge-density wave. These three states form a pseudospin triplet, demonstrating a close connection with the E X e dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller effect as a form of flux phase. A simple model of the Cu-O bond stretching phonons allows an estimate of electron-phonon coupling for these modes, explaining why the half breathing mode softens so much more than the full oxygen breathing mode. The anomalous properties of O2O^{2-} provide a coupling (correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon modes, 16 eps figures, revte

    Long-term yield of pancreatic cancer surveillance in high-risk individuals

    Get PDF
    Objective We aimed to determine the long-term yield of pancreatic cancer surveillance in hereditary predisposed high-risk individuals. Design From 2006 to 2019, we prospectively enrolled asymptomatic individuals with an estimated 10% or greater lifetime risk of pancreatic ductal adenocarcinoma (PDAC) after obligatory evaluation by a clinical geneticist and genetic testing, and subjected them to annual surveillance with both endoscopic ultrasonography (EUS) and MRI/cholangiopancreatography (MRI/MRCP) at each visit. Results 366 individuals (201 mutation-negative familial pancreatic cancer (FPC) kindreds and 165 PDAC susceptibility gene mutation carriers; mean age 54 years, SD 9.9) were followed for 63 months on average (SD 43.2). Ten individuals developed PDAC, of which four presented with a symptomatic interval carcinoma and six underwent resection. The cumulative PDAC incidence was 9.3% in the mutation carriers and 0% in the FPC kindreds (p<0.001). Median PDAC survival was 18 months (range 1-32). Surgery was performed in 17 individuals (4.6%), whose pathology revealed 6 PDACs (3 T1N0M0), 7 low-grade precursor lesions, 2 neuroendocrine tumours <2 cm, 1 autoimmune pancreatitis and in 1 individual no abnormality. There was no surgery-related mortality. EUS detected more solid lesions than MRI/MRCP (100% vs 22%, p<0.001), but less cystic lesions (42% vs 83%, p<0.001). Conclusion The diagnostic yield of PDAC was substantial in established high-risk mutation carriers, but non-existent in the mutation-negative proven FPC kindreds. Nevertheless, timely identification of resectable lesions proved challenging despite the concurrent use of two imaging modalities, with EUS outperforming MRI/MRCP. Overall, surveillance by imaging yields suboptimal results with a clear need for more sensitive diagnostic markers, including biomarkers

    Axial slicing versus bivalving in the pathological examination of pancreatoduodenectomy specimens (APOLLO): a multicentre randomized controlled trial

    Get PDF
    Background: In pancreatoduodenectomy specimens, dissection method may affect the assessment of primary tumour origin (i.e. pancreatic, distal bile duct or ampullary adenocarcinoma), which is primarily determined macroscopically. This is the first study to prospectively compare the two commonly used techniques, i.e. axial slicing and bivalving. Methods: In four centres, a randomized controlled trial was performed in specimens of patients with a suspected (pre)malignant tumour in the pancreatic head. Primary outcome measure was the level of certainty (scale 0–100) regarding tumour origin by four independent gastrointestinal pathologists based on macroscopic assessment. Secondary outcomes were inter-observer agreement and R1 rate. Results: In total, 128 pancreatoduodenectomy specimens were randomized. The level of certainty in determining the primary tumour origin did not differ between axial slicing and bivalving (mean score 72 [sd 13] vs. 68 [sd 16], p = 0.21), nor did inter-observer agreement, both being moderate (kappa 0.45 vs. 0.47). In pancreatic cancer specimens, R1 rate (60% vs. 55%, p = 0.71) and the number of harvested lymph nodes (median 16 vs. 17, p = 0.58) were similar. Conclusion: This study demonstrated no differences in determining the tumour origin between axial slicing and bivalving. Both techniques performed similarly regarding inter-observer agreement, R1 rate, and lymph node harvest

    Study of Z → llγ decays at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a study of Z → llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb−1 collected at a centre-ofmass energy √s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with stateof-the-art predictions for final-state QED radiation. First measurements of Z → llγ γ decays are also reported

    Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state

    Get PDF
    This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb−1 of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30+0.13−0.09) is observed (expected) at 95% confidence level

    Software performance of the ATLAS track reconstruction for LHC run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two
    corecore