196 research outputs found

    Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential

    Full text link
    Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method of Lyapunov--Schmidt reductions in Fourier space. In particular, existence of periodic/anti-periodic and decaying solutions is proved and the error terms are controlled in suitable norms. The use of multi-dimensional stationary coupled-mode systems is justified for analysis of bifurcations of periodic/anti-periodic solutions in a small multi-dimensional periodic potential.Comment: 18 pages, no figure

    Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential

    Full text link
    We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.Comment: 32 pages, 16 figure

    Flavor changing Z-decays from scalar interactions at a Giga-Z Linear Collider

    Full text link
    The flavor changing decay Z -> d_I \bar{d}_J is investigated with special emphasis on the b \bar{s} final state. Various models for flavor violation are considered: two Higgs doublet models (2HDM's), supersymmetry (SUSY) with flavor violation in the up and down-type squark mass matrices and SUSY with flavor violation mediated by R-parity-violating interaction. We find that, within the SUSY scenarios for flavor violation, the branching ratio for the decay Z -> b \bar{s} can reach 10^{-6} for large \tan\beta values, while the typical size for this branching ratio in the 2HDM's considered is about two orders of magnitudes smaller at best. Thus, flavor changing SUSY signatures in radiative Z decays such as Z -> b \bar{s} may be accessible to future ``Z factories'' such as a Giga-Z version of the TESLA design.Comment: 27 pages, 15 figures, REVTeX4. A new section added and a few minor corrections were made in the tex

    Interpretation of Fracture Toughness and R-Curve Behavior by Direct Observation of Microfracture Process in Ti-Based Dendrite-Containing Amorphous Alloys

    Get PDF
    Fracture properties of Ti-based amorphous alloys containing ductile beta dendrites were explained by directly observing microfracture processes. Three Ti-based amorphous alloys were fabricated by adding Ti, Zr, V, Ni, Al, and Be into a Ti-6Al-4V alloy by a vacuum arc melting method. The effective sizes of dendrites varied from 63 to 104 mu m, while their volume fractions were almost constant within the range from 74 to 76 pct. The observation of the microfracture of the alloy containing coarse dendrites revealed that a microcrack initiated at the amorphous matrix of the notch tip and propagated along the amorphous matrix. In the alloy containing fine dendrites, the crack propagation was frequently blocked by dendrites, and many deformation bands were formed near or in front of the propagating crack, thereby resulting in a zig-zag fracture path. Crack initiation toughness was almost the same at 35 to 36 MPaaem within error ranges in the three alloys because it was heavily affected by the stress applied to the specimen at the time of crack initiation at the crack tip as well as strength levels of the alloys. According to the R-curve behavior, however, the best overall fracture properties in the alloy containing fine dendrites were explained by mechanisms of blocking of the crack growth and crack blunting and deformation band formation at dendrites. (C) The Minerals, Metals & Materials Society and ASM International 2015ope

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV
    corecore