86 research outputs found

    Land and people

    Get PDF
    Our relationship with the landscape has developed through time and more and more the environment is responding to human-driven changes. Now is the time to steer this relationship towards a sustainable future, suggest our Editorial Board Members. Our relationship with the landscape has developed through time and more and more the environment is responding to human-driven changes. Now is the time to steer this relationship towards a sustainable future, suggest our Editorial Board Members

    Effects of natural and experimental drought on soil fungi and biogeochemistry in an Amazon rain forest

    Get PDF
    Microbiota are essential components of the soil, driving biogeochemical cycles. Fungi affect decomposition and biotic interactions with plants across scales. Climate projections suggest that extended dry seasons may transform sensitive rain forests into savanna-like vegetation, with consequent changes in biogeochemistry. Here we compare the impacts of natural seasonality with 14 years of partial throughfall exclusion in an Amazonian rain forest, focussing on soil fungal functional diversity, extracellular soil enzyme activities (EEA) and their implications for nutrient dynamics. Large changes in fungal diversity and functional group composition occur in response to drought, with a conspicuous increase in the abundance of dark-septate fungi and a decrease in fungal pathogens. The high seasonality of EEA in the control (non droughted) and suppression of seasonality in the drought treatment, together with an increased implied nitrogen demand in the dry season induced by experimental drought, suggest that the changed soil microbiota activity may signal a pending shift in the biogeochemical functioning of the forest.R.C.S. was supported by grants received from the Brazilian National Research Council (CNPq; 383166/2015-2) and Higher Education Research Council.(CAPES; 1633282). J.G. received funding from the Lendület Program (96049) of the Hungarian Academy of Sciences and the Eötvös Lóránd Research Network. This work formed part of a project funded by the Natural Environment Research Council (NERC; NE/J011002/1, NE/N006852/1)

    Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences

    Get PDF
    Introductions and invasions by fungi, especially pathogens and mycorrhizal fungi, are widespread and potentially highly consequential for native ecosystems, but may also offer opportunities for linking microbial traits to their ecosystem functions. In particular, treating ectomycorrhizal (EM) invasions, i.e., co-invasions by EM fungi and their EM host plants, as natural experiments may offer a powerful approach for testing how microbial traits influence ecosystem functions. Forests dominated by EM symbiosis have unique biogeochemistry whereby the secretions of EM plants and fungi affect carbon (C) and nutrient cycling; moreover, particular lineages of EM fungi have unique functional traits. EM invasions may therefore alter the biogeochemistry of the native ecosystems they invade, especially nitrogen (N) and C cycling. By identifying “response traits” that favor the success of fungi in introductions and invasions (e.g., spore dispersal and germination) and their correlations with “effect traits” (e.g., nutrient-cycling enzymes) that can alter N and C cycling (and affect other coupled elemental cycles), one may be able to predict the functional consequences for ecosystems of fungal invasions using biogeochemistry models that incorporate fungal traits. Here, we review what is already known about how EM fungal community composition, traits, and ecosystem functions differ between native and exotic populations, focusing on the example of EM fungi associated with species of Pinus introduced from the Northern into the Southern Hemisphere. We develop hypotheses on how effects of introduced and invasive EM fungi may depend on interactions between soil N availability in the exotic range and EM fungal traits. We discuss how such hypotheses could be tested by utilizing Pinus introductions and invasions as a model system, especially when combined with controlled laboratory experiments. Finally, we illustrate how ecosystem modeling can be used to link fungal traits to their consequences for ecosystem N and C cycling in the context of biological invasions, and we highlight exciting avenues for future directions in understanding EM invasion.Fil: Hoeksema, Jason D.. University of Mississippi; Estados UnidosFil: Averill, Colin. No especifíca;Fil: Bhatnagar, Jennifer M.. Boston University; Estados UnidosFil: Brzostek, Edward. West Virginia University; Estados UnidosFil: Buscardo, Erika. Universidade do Brasília; BrasilFil: Chen, Ko Hsuan. University of Florida; Estados UnidosFil: Liao, Hui Ling. University of Florida; Estados UnidosFil: Nagy, Laszlo. Universidade Estadual de Campinas; BrasilFil: Policelli, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ridgeway, Joanna. West Virginia University; Estados UnidosFil: Rojas, J. Alejandro. University of Arkansas for Medical Sciences; Estados UnidosFil: Vilgalys, Rytas. University of Duke; Estados Unido

    Afforestation of agricultural land with Pinus radiata D. don and Betula alba L. in NW Spain: effects on soil PH, understorey production and floristic diversity eleven years after establishment

    Get PDF
    Afforestation of abandoned agricultural lands has been the main change in land use over the past decade in Europe. However, the impact of tree species and understorey management on production and plant diversity over the medium- and long-term has not been thoroughly studied. This paper aims to evaluate the effects of an afforestation of Pinus radiata D. Don and Betula alba L. on soil pH, understorey production and plant diversity and life cycle type (annuals vs. perennials) managed with different soil fertilisation treatments over a period of 11 years. The results show an acidification of the soil 11 years after establishment, better vertical growth and diameter of pine compared with birch as usually happens in the region and important variation in the biomass production and composition of the understorey below both tree species. Understorey species remained similar during the first 5 years below both canopies. However, species richness (S) was drastically reduced under Pinus radiata D. Don plantation compared to Betula alba L. (Spine = 2 vs. Sbirch = 17) after 11 years of tree establishment at a very high density (2500 trees ha−1). Inorganic and organic fertilisation also caused a reduction in floristic diversity. Soil pH, pasture production and floristic understorey plant diversity are better preserved under autochthonous broadleaves, which increased the multiple uses of recently afforested lands in the short- and medium-term. In the European context of high need for sawn wood, the use of autochthonous broadleaved tree species like Betula should be promoted due to their better sustainabilit

    Of mammals and bacteria in a rainforest: Temporal dynamics of soil bacteria in response to simulated N pulse from mammalian urine

    Get PDF
    Pulse-type perturbation through excreta by animals creates a mosaic of short-term high nutrient-load patches in the soil. How this affects microbial community composition and how long these impacts last are important for microbial community dynamics and nutrient cycling. Our study focused on the short-term responses to N by bacterial communities and ‘functional groups’ associated with the N cycle in a lowland evergreen tropical rainforest. We applied a single urea pulse, equivalent to urine-N deposition by medium-sized mammals to simulate N enrichment and changes in soil N availability, and analysed soil bacterial communities using molecular methods, before and after urea application. Urea addition increased mineral N availability and changed bacterial community composition, from phylum to operational taxonomic unit levels, however, taxon richness and diversity were unaffected. Taxa involved in the physiologically “narrow” processes of nitrification (e.g. Nitrosospira) and denitrification (e.g. Phyllobacteriaceae, Xanthomonadaceae and Comamonadaceae) increased their relative abundance, while N2-fixers (e.g. Rhodospirillales, and Rhizobiales) decreased after treatment. While a temporal legacy on both community composition and functional group profile was observable 58 and 159 days after treatment, at the latter date bacterial communities were already tending towards pre-treatment composition. We suggest that pulse-type perturbation by mammal urine that occurs on a daily basis has strong short-term effects on patch dynamics of soil microbiota and N availability. Such a spatio-temporally dynamic soil environment enhances overall microbial richness and diversity, and contributes to the apparent temporal resilience of community composition. A plain language summary is available for this article. © 2017 The Authors. Functional Ecology © 2017 British Ecological Societ

    The PREDICTS database: A global database of how local terrestrial biodiversity responds to human impacts

    Full text link
    © 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015. The collation of biodiversity datasets with broad taxonomic and biogeographic extents is necessary to understand historical declines and to project - and hopefully avert - future declines. We describe a newly collated database of more than 1.6 million biodiversity measurements from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world

    Mycorrhization of fagaceae forests within mediterranean ecosystems

    Get PDF
    Mediterranean Fagaceae forests are valuable due to their ecological and socioeconomic aspects. Some profitable plant species, such as Castanea (timber and chestnut), Quercus (timber and cork), and Fagus (timber), encounter in this habitat the excellent edaphoclimatic conditions to develop. All Fagaceae plants are commonly associated to ECM fungal species, which are found in these forests in quite stable communities, mainly enriched in Russulaceae and Telephoraceae species. Currently, the Mediterranean Basin is considered as one of the global biodiversity hotspots, since many of their endemic plant species are not found elsewhere and are now under threat. Due to climate changing and introduction of disease agents, Fagaceae forests are facing an adaptation challenge to both biotic and abiotic threats. Although ECM communities are highly disturbed by climate factors and tree disease incidence, they could play an important role in increasing water availability to the plant and also improving plant tree defense against pathogens. Recent advances, namely, on genomics and transcriptomics, are providing tools for increasing the understanding of Fagaceae mycorrhization process and stress responses to biotic and abiotic stresses. Such studies can provide new information for the implementation of the most adequate management policies for protecting threaten Mediterranean forests.info:eu-repo/semantics/publishedVersio
    corecore