249 research outputs found

    <i>Mare Geneticum</i>: balancing governance of marine genetic resources in international waters

    Get PDF
    A fair and effective regime regulating benefit-sharing of marine genetic resources (MGR) in areas beyond national jurisdiction (ABNJ) must consider the inclusion of developing states, support scientific research and safeguard investments of the private sector. The present innovative proposal ensures a delicate balance through an approach based on open access, albeit with limitations. Access to MGR in ABNJ is facilitated, but conditional on the public release of collected samples and raw data. Adoption of the open access principle guarantees a powerful form of non-monetary benefit-sharing. The balance is maintained by the option for an extended embargo period, allowing samples and data to be kept confidential for a certain period, against payment to a biodiversity contribution fund. Monetary benefit-sharing, as a sector-negotiated percentage on revenue, could be imposed at the point of product commercialisation, and would offer a tangible payment system with a low transaction cost

    Regularization of point vortices for the Euler equation in dimension two

    Full text link
    In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem [ -\ep^2 \Delta u=(u-q-\frac{\kappa}{2\pi}\ln\frac{1}{\ep})_+^p, \quad & x\in\Omega, u=0, \quad & x\in\partial\Omega, ] where p>1p>1, ΩR2\Omega\subset\mathbb{R}^2 is a bounded domain, qq is a harmonic function. We showed that if Ω\Omega is simply-connected smooth domain, then for any given non-degenerate critical point of Kirchhoff-Routh function W(x1,...,xm)\mathcal{W}(x_1,...,x_m) with the same strength κ>0\kappa>0, there is a stationary classical solution approximating stationary mm points vortex solution of incompressible Euler equations with vorticity mκm\kappa. Existence and asymptotic behavior of single point non-vanishing vortex solutions were studied by D. Smets and J. Van Schaftingen (2010).Comment: 32page

    Desingularization of vortices for the Euler equation

    Full text link
    We study the existence of stationary classical solutions of the incompressible Euler equation in the plane that approximate singular stationnary solutions of this equation. The construction is performed by studying the asymptotics of equation -\eps^2 \Delta u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet boundary conditions and qq a given function. We also study the desingularization of pairs of vortices by minimal energy nodal solutions and the desingularization of rotating vortices.Comment: 40 page

    An innovative ethosuximide granule formulation designed for pediatric use: Comparative pharmacokinetics, safety, tolerability, and palatability profile versus reference syrup.

    Get PDF
    Ethosuximide, the first-line therapy for childhood absence epilepsy, is currently formulated as a syrup (Zarontin®, Pfizer) with a bitter taste and high sugar content, poorly adapted to children, and a ketogenic diet. The collaborative European FP7 project KIEKIDS aimed at developing an innovative sugar-free, tasteless formulation convenient for pediatric use. This dual Phase-I study evaluated two granule formulations based on lipid multiparticulate (LMP) technology. Two panels of 6 healthy adult volunteers underwent a randomized, placebo-controlled, partly blinded, 3-way cross-over trial, comparing ethosuximide granules A or B with placebo granules and syrup at single 10 mg/kg doses. Corresponding plasma pharmacokinetic profiles of ethosuximide were compared, along with palatability, safety, and tolerability. The LMP granule A proved suboptimal due to bitterness and adherence to beaker walls, while the optimized granule B revealed excellent palatability, similar to placebo granules, and low adherence to glass. The relative bioavailability of granules A versus syrup, based on dose-normalized C &lt;sub&gt;max&lt;/sub&gt; and AUC &lt;sub&gt;0-∞&lt;/sub&gt; was 93.7% [90% CI: 76.3-115.1] and 96.1% [91.0-101.5], respectively. For granules B it was 87.6% [81.6-94.0] and 92.5% [88.5-96.6], respectively, with slightly delayed t &lt;sub&gt;max&lt;/sub&gt; of 0.75 h [0.5-4.05] compared to syrup 0.5 h [0.3-0.8]. Tolerability visual analog scales revealed a trend for statistically non-significant improvement versus syrup at peak (30 min) for transient dizziness (both granules), fatigue (granules A), and anxiety (granules B). The innovative ethosuximide granule formulation B achieves a suitable profile for pediatric use, being sugar-free, tasteless, bioequivalent, and well-tolerated while enabling precise adjustment to body weight

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Pliocene Model Intercomparison Project Phase 3 (PlioMIP3) – Science plan and experimental design

    Get PDF
    The Pliocene Model Intercomparison Project (PlioMIP) was initiated in 2008. Over two phases PlioMIP has helped co-ordinate the experimental design and publication strategy of the community, which has included an increasing number of climate models and modelling groups from around the world. It has engaged with palaeoenvironmental scientists to foster new data synthesis supporting the construction of new model boundary conditions, as well as to facilitate new data-model comparisons. The work has advanced our understanding of Pliocene climates and environments, enhanced our knowledge regarding the ability of complex climate and Earth System models to accurately simulate climate change, and helped to refine our estimates of how sensitive the climate system is to forcing conditions. In this community protocol paper, we outline the scientific plan for PlioMIP Phase 3 (PlioMIP3). This plan provides the required guidance to participating modelling groups from around the world to successfully set up and perform PlioMIP3 climate model experiments. The project is open to new participants from the scientific community (both from the climate modelling and geosciences communities). In PlioMIP3, we retain the PlioMIP2 Core experiments (Eoi400, E280) and extend the Core requirements to include either an experiment focussed on the Early Pliocene or an alternative Late Pliocene simulation (or both). These additions (a) allow a comparison of Early and Late Pliocene warm intervals and help build research connections and synergy with the MioMIP (Miocene Model Intercomparison Project - also known as DeepMIP-Miocene) and PlioMioVAR projects (Pliocene-Miocene Variability Working Group), and (b) create an alternative time slice simulation for 3.205 Ma (MIS KM5c) through removal of some of the largest palaeogeographic differences introduced between PlioMIP1 and 2 resulting in minimal land-sea mask variations from the modern. In addition, we present ten optional experiments designed to enhance our assessment of climate sensitivity and to explore the uncertainty in greenhouse gas-related forcing. For the first time, we introduce orbital sensitivity experiments into the science plan, as well as simulations incorporating dynamic vegetation-climate feedbacks and an experiment designed to examine the potential significance of East Antarctic Ice Sheet boundary condition uncertainty. These changes enhance palaeo-to-future scientific connections and enable an exploration of the significance of palaeogeographic uncertainties on climate simulations

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
    corecore