1,054 research outputs found
The Extended Baryon Oscillation Spectroscopic Survey: Variability Selection and Quasar Luminosity Function
The SDSS-IV/eBOSS has an extensive quasar program that combines several
selection methods. Among these, the photometric variability technique provides
highly uniform samples, unaffected by the redshift bias of traditional
optical-color selections, when quasars cross the stellar locus
or when host galaxy light affects quasar colors at . Here, we present
the variability selection of quasars in eBOSS, focusing on a specific program
that led to a sample of 13,876 quasars to over a 94.5
deg region in Stripe 82, an areal density 1.5 times higher than over the
rest of the eBOSS footprint. We use these variability-selected data to provide
a new measurement of the quasar luminosity function (QLF) in the redshift range
. Our sample is denser, reaches deeper than those used in previous
studies of the QLF, and is among the largest ones. At the faint end, our QLF
extends to at low redshift and to
at . We fit the QLF using two independent double-power-law models with
ten free parameters each. The first model is a pure luminosity-function
evolution (PLE) with bright-end and faint-end slopes allowed to be different on
either side of . The other is a simple PLE at , combined with a
model that comprises both luminosity and density evolution (LEDE) at .
Both models are constrained to be continuous at . They present a
flattening of the bright-end slope at large redshift. The LEDE model indicates
a reduction of the break density with increasing redshift, but the evolution of
the break magnitude depends on the parameterization. The models are in
excellent accord, predicting quasar counts that agree within 0.3\% (resp.,
1.1\%) to (resp., ). The models are also in good agreement over
the entire redshift range with models from previous studies.Comment: 15 pages, 12 figures, accepted for publication in A&
Prognostic factors in node-negative colorectal cancer: a retrospective study from a prospective database
PURPOSE: There is a need to identify a subgroup of high-risk patients with node-negative colorectal cancer who have a poor long-term prognosis and may benefit from adjuvant therapies. The aim of this study was to evaluate the prognostic impact of clinical and pathological parameters in a retrospective study from a prospective, continuous database of homogenously treated patients.
METHODS: This study included 362 patients operated in a single institution for Dukes A and B (node-negative) colorectal cancer. The median follow-up was 140 months. The prognostic value of 13 clinical and pathological parameters was investigated.
RESULTS: Multivariate analysis identified six independent prognostic factors: age at time of diagnosis (hazard ratio (HR) = 1.076), number of lymph nodes removed (HR = 0.948), perineural invasion (HR = 2.173), venous invasion (HR = 1.959), lymphatic vessel invasion (HR = 2.126), and T4 stage (HR = 5.876).
CONCLUSION: These parameters could be useful in identifying patients with high-risk node-negative colorectal cancer who should be presented to adjuvant therapy
First electron beam polarization measurements with a Compton polarimeter at Jefferson Laboratory
A Compton polarimeter has been installed in Hall A at Jefferson Laboratory.
This letter reports on the first electron beam polarization measurements
performed during the HAPPEX experiment at an electron energy of 3.3 GeV and an
average current of 40 A. The heart of this device is a Fabry-Perot cavity
which increased the luminosity for Compton scattering in the interaction region
so much that a 1.4% statistical accuracy could be obtained within one hour,
with a 3.3% total error
New pixelized Micromegas detector with low discharge rate for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than
for the present Micromegas detectors) with pixelized read-out in the central
part, light and integrated electronics, and improved robustness. Two solutions
of reduction of discharge impact have been studied, with Micromegas detectors
using resistive layers and using an additional GEM foil. Performance of such
detectors has also been measured. A large size prototypes with nominal active
area and pixelized read-out has been produced and installed at COMPASS in 2010.
In 2011 prototypes featuring an additional GEM foil, as well as an resistive
prototype, are installed at COMPASS and preliminary results from those
detectors presented very good performance. We present here the project and
report on its status, in particular the performance of large size prototypes
with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa
New pixelized Micromegas detector for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for
the present detectors) with pixelized read-out in the central part, light and
integrated electronics, and improved robustness. Studies were done with the
present detectors moved in the beam, and two first pixelized prototypes are
being tested with muon and hadron beams in real conditions at COMPASS. We
present here this new project and report on two series of tests, with old
detectors moved into the beam and with pixelized prototypes operated in real
data taking condition with both muon and hadron beams.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2009), 12-15 June 2009, Kolympari, Crete, Greece
Minor details added and language corrections don
Measurement of the Generalized Forward Spin Polarizabilities of the Neutron
The generalized forward spin polarizabilities and of
the neutron have been extracted for the first time in a range from 0.1 to
0.9 GeV. Since is sensitive to nucleon resonances and
is insensitive to the resonance, it is expected that the
pair of forward spin polarizabilities should provide benchmark tests of the
current understanding of the chiral dynamics of QCD. The new results on
show significant disagreement with Chiral Perturbation Theory
calculations, while the data for at low are in good agreement
with a next-to-lead order Relativistic Baryon Chiral Perturbation theory
calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR
Q^2 Evolution of the Neutron Spin Structure Moments using a He-3 Target
We have measured the spin structure functions and of He in a
double-spin experiment by inclusively scattering polarized electrons at
energies ranging from 0.862 to 5.07 GeV off a polarized He target at a
15.5 scattering angle. Excitation energies covered the resonance and
the onset of the deep inelastic regions. We have determined for the first time
the evolution of ,
and for the neutron in the range 0.1 GeV 0.9 GeV with good precision. displays a smooth
variation from high to low . The Burkhardt-Cottingham sum rule holds
within uncertainties and is non-zero over the measured range.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Lett.. Updated Hermes
data in Fig. 2 (top panel) and their corresponding reference. Updated the low
x extrapolation error Fig. 2 (middle panel). Corrected references to ChiPT
calculation
Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory
The deuteron elastic structure function A(Q^2) has been extracted in the Q^2
range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic
electron-deuteron scattering in coincidence using the Hall A Facility of
Jefferson Laboratory. The data are compared to theoretical models based on the
impulse approximation with inclusion of meson-exchange currents, and to
predictions of quark dimensional scaling and perturbative quantum
chromodynamicsComment: Submitted to Physical Review Letter
A new measurement of the structure functions and in virtual Compton scattering at 0.33 (GeV/c)
The cross section of the reaction has been measured at
(GeV/c). The experiment was performed using the electron beam
of the MAMI accelerator and the standard detector setup of the A1
Collaboration. The cross section is analyzed using the low-energy theorem for
virtual Compton scattering, yielding a new determination of the two structure
functions P_LL}-P_{TT}/epsilon and which are linear combinations of
the generalized polarizabilities of the proton. We find somewhat larger values
than in the previous investigation at the same . This difference, however,
is purely due to our more refined analysis of the data. The results tend to
confirm the non-trivial -evolution of the generalized polarizabilities and
call for more measurements in the low- region ( 1 (GeV/c)).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and
figure
New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors
We have measured the parity-violating electroweak asymmetry in the elastic
scattering of polarized electrons from the proton. The result is A = -15.05 +-
0.98(stat) +- 0.56(syst) ppm at the kinematic point theta_lab = 12.3 degrees
and Q^2 = 0.477 (GeV/c)^2. The measurement implies that the value for the
strange form factor (G_E^s + 0.392 G_M^s) = 0.025 +- 0.020 +- 0.014, where the
first error is experimental and the second arises from the uncertainties in
electromagnetic form factors. This measurement is the first fixed-target parity
violation experiment that used either a `strained' GaAs photocathode to produce
highly polarized electrons or a Compton polarimeter to continuously monitor the
electron beam polarization.Comment: 8 pages, 4 figures, Tex, elsart.cls; revised version as accepted for
Phys. Lett.
- …
