107 research outputs found

    Growth rings in tropical trees : role of functional traits, environment, and phylogeny

    Get PDF
    Acknowledgments Financial support of the Centre National de la Recherche Scientifique (USR 3330), France, and from the Rufford Small Grants Foundation (UK) is acknowledged. We thank the private farmers and coffee plantation companies of Kodagu for providing permissions and logistical support for this project. We are grateful to N. Barathan for assistance with slide preparation and data entry, S. Aravajy for botanical assistance, S. Prasad and G. Orukaimoni for technical inputs, and A. Prathap, S. Shiva, B. Saravana, and P. Shiva for field assistance. The corresponding editor and three anonymous reviewers provided insightful comments that improved the manuscript.Peer reviewedPostprin

    Regeneration in felling gaps after logging in Acre state, Western Amazon.

    Get PDF
    Regeneration of tree species in felling gaps were studied during the first two years following harvesting in a tropical forest in Acre state, Brazil. Felling gaps averaged 340 m2 in size, while canopy openings averaged 17%. Seedling mortality in adjacent undisturbed forest was 4.6% yr', and 59.6% yr·1 and 100% yr' in the crown and trunk zones respectively, two years after logging. Recruitment of new seedlings inthe undisturbed forest understorey averaged 462 plants ha' yr', two years after gap creation. Inthe crown zones of the gaps, recruitment of seedlings averaged 1350 ha' yr', and in the trunk zones 1392 ha' yr'. The entire seedling community in trunk zones after logging was composed of new recruits. lhere was a tendency for seedling growth rates to increase from the natural forest (0,21cm yr-1) to the crown zone (0.40cm yr'), Before gap creation, species richness and diversity and seedling density were quite similar. After gap creation a sharp decrease could be verified in the gap.zones, however the differences between gap and undisturbed forest decreased rapidly in the second year after gap creation. lhe regeneration of commercial species was not affected by gap creation apart from the increase in growth rates

    Sustainable forest management for smallholder farmers in the Brazilian Amazon.

    Get PDF
    The paper describes a forest management system to be applied on smallholder farms, particularly on settlement projects in the Brazilian Amazon. The proposed forest management system was designed to generate a new source of family income and to maintain forest structure and biodiversity. The system is new in three main characteristics: the use of short cycles in the management of tropical forests, the low harvesting intensity and environmental impact, and the direct involvement of the local population in ali forest management activities. It is based on a minimum felling cycle of ten years and an annual timber harvest of 5-10 m3 ha-1

    The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo

    Get PDF
    Forest degradation through logging is pervasive throughout the world's tropical forests, leading to changes in the three-dimensional canopy structure that have profound consequences for wildlife, microclimate and ecosystem functioning. Quantifying these structural changes is fundamental to understanding the impact of degradation, but is challenging in dense, structurally complex forest canopies. We exploited discrete-return airborne LiDAR surveys across a gradient of logging intensity in Sabah, Malaysian Borneo, and assessed how selective logging had affected canopy structure (Plant Area Index, PAI, and its vertical distribution within the canopy). LiDAR products compared well to independent, analogue models of canopy structure produced from detailed ground-based inventories undertaken in forest plots, demonstrating the potential for airborne LiDAR to quantify the structural impacts of forest degradation at landscape scale, even in some of the world's tallest and most structurally complex tropical forests. Plant Area Index estimates across the plot network exhibited a strong linear relationship with stem basal area (R2 = 0.95). After at least 11–14 years of recovery, PAI was ~28% lower in moderately logged plots and ~52% lower in heavily logged plots than that in old-growth forest plots. These reductions in PAI were associated with near-complete lack of trees >30-m tall, which had not been fully compensated for by increasing plant area lower in the canopy. This structural change drives a marked reduction in the diversity of canopy environments, with the deep, dark understorey conditions characteristic of old-growth forests far less prevalent in logged sites. Full canopy recovery is likely to take decades. Synthesis and applications. Effective management and restoration of tropical forests requires detailed monitoring of the forest and its environment. We demonstrate that airborne LiDAR can effectively map the canopy architecture of the complex tropical forests of Borneo, capturing the three-dimensional impact of degradation on canopy structure at landscape scales, therefore facilitating efforts to restore and conserve these ecosystems

    Sustainable forest management for smallholder farmers in the Brazilian Amazon.

    Get PDF
    The ecological basis for this sustainable forest management system, the components of the management system, and their application in a pilot project on smallholder farms in the pc Pedro Peixoto in Acre state in the western Brazilian Amazon are described in this chapter. Preliminary results from the pilot project on tree growth, mortality, and recruitment after an initial harvesting are also discussed

    Demographic consequences of heterogeneity in conspecific density dependence among mast-fruiting tropical trees

    Get PDF
    The role of conspecific density dependence (CDD) in the maintenance of species richness is a central focus of tropical forest ecology. However, tests of CDD often ignore the integrated effects of CDD over multiple life stages and their long-term impacts on population demography. We combined a 10-year time series of seed production, seedling recruitment and sapling and tree demography of three dominant Southeast Asian tree species that adopt a mast-fruiting phenology. We used these data to construct individual- based models that examine the effects of CDD on population growth rates (ë) across life-history stages. Recruitment was driven by positive CDD for all species, supporting the predator satiation hypothesis, while negative CDD affected seedling and sapling growth of two species, significantly reducing ë. This negative CDD on juvenile growth overshadowed the positive CDD of recruitment, suggesting the cumulative effects of CDD during seedling and sapling development has greater importance than the positive CDD during infrequent masting events. Overall, CDD varied among positive, neutral and negative effects across life-history stages for all species, suggesting that assessments of CDD on transitions between just two stages (e.g. seeds seedlings or juveniles mature trees) probably misrepresent the importance of CDD on population growth and stability

    Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness

    Get PDF
    AIM: Mapping tree species richness across the tropics is of great interest for effective conservation and biodiversity management. In this study, we evaluated the potential of full‐waveform lidar data for mapping tree species richness across the tropics by relating measurements of vertical canopy structure, as a proxy for the occupation of vertical niche space, to tree species richness. LOCATION: Tropics. TIME PERIOD: Present. MAJOR TAXA STUDIED: Trees. METHODS: First, we evaluated the characteristics of vertical canopy structure across 15 study sites using (simulated) large‐footprint full‐waveform lidar data (22 m diameter) and related these findings to in‐situ tree species information. Then, we developed structure–richness models at the local (within 25–50 ha plots), regional (biogeographical regions) and pan‐tropical scale at three spatial resolutions (1.0, 0.25 and 0.0625 ha) using Poisson regression. RESULTS: The results showed a weak structure–richness relationship at the local scale. At the regional scale (within a biogeographical region) a stronger relationship between canopy structure and tree species richness across different tropical forest types was found, for example across Central Africa and in South America [R^{2} ranging from .44–.56, root mean squared difference as a percentage of the mean (RMSD%) ranging between 23–61%]. Modelling the relationship pan‐tropically, across four continents, 39% of the variation in tree species richness could be explained with canopy structure alone (R^{2} = .39 and RMSD% = 43%, 0.25‐ha resolution). MAIN CONCLUSIONS: Our results may serve as a basis for the future development of a set of structure–richness models to map high resolution tree species richness using vertical canopy structure information from the Global Ecosystem Dynamics Investigation (GEDI). The value of this effort would be enhanced by access to a larger set of field reference data for all tropical regions. Future research could also support the use of GEDI data in frameworks using environmental and spectral information for modelling tree species richness across the tropics

    Exploring temporality in socio-ecological resilience through experiences of the 2015–16 El Niño across the Tropics

    Get PDF
    In a context of both long-term climatic changes and short-term climatic shocks, temporal dynamics profoundly influence ecosystems and societies. In low income contexts in the Tropics, where both exposure and vulnerability to climatic fluctuations is high, the frequency, duration, and trends in these fluctuations are important determinants of socio-ecological resilience. In this paper, the dynamics of six diverse socio-ecological systems (SES) across the Tropics – ranging from agricultural and horticultural systems in Africa and Oceania to managed forests in South East Asia and coastal systems in South America – are examined in relation to the 2015–16 El Niño, and the longer context of climatic variability in which this short-term ‘event’ occurred. In each case, details of the socio-ecological characteristics of the systems and the climate phenomena experienced during the El Niño event are described and reflections on the observed impacts of, and responses to it are presented. Drawing on these cases, we argue that SES resilience (or lack of) is, in part, a product of both long-term historical trends, as well as short-term shocks within this history. Political and economic lock-ins and dependencies, and the memory and social learning that originates from past experience, all contribute to contemporary system resilience. We propose that the experiences of climate shocks can provide a window of insight into future ecosystem responses and, when combined with historical perspectives and learning from multiple contexts and cases, can be an important foundation for efforts to build appropriate long-term resilience strategies to mediate impacts of changing and uncertain climates

    Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning

    Get PDF
    Borneo contains some of the world's most biodiverse and carbon-dense tropical forest, but this 750 000 km(2) island has lost 62% of its old-growth forests within the last 40 years. Efforts to protect and restore the remaining forests of Borneo hinge on recognizing the ecosystem services they provide, including their ability to store and sequester carbon. Airborne laser scanning (ALS) is a remote sensing technology that allows forest structural properties to be captured in great detail across vast geographic areas. In recent years ALS has been integrated into statewide assessments of forest carbon in Neotropical and African regions, but not yet in Asia. For this to happen new regional models need to be developed for estimating carbon stocks from ALS in tropical Asia, as the forests of this region are structurally and composition-ally distinct from those found elsewhere in the tropics. By combining ALS imagery with data from 173 permanent forest plots spanning the lowland rainforests of Sabah on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks using ALS-derived canopy height and canopy cover as input metrics. An advanced feature of this new model is the propagation of uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of carbon stocks to be quantified robustly. We show that the model effectively captures variation in aboveground carbon stocks across extreme disturbance gradients spanning tall dipterocarp forests and heavily logged regions and clearly outperforms existing ALS-based models calibrated for the tropics, as well as currently available satellite-derived products. Our model provides a simple, generalized and effective approach for mapping forest carbon stocks in Borneo and underpins ongoing efforts to safeguard and facilitate the restoration of its unique tropical forests.Peer reviewe
    corecore