70 research outputs found

    Der pathomolekulare Mechanismus einer t(4;11)-assoziierten Leukämie

    Get PDF
    Reziproke chromosomale Translokationen sind häufig mit Leukämien und Lymphomen assoziiert und gelten in vielen Fällen als Ursache der Erkrankung. Die reziproke Translokation t(4;11) findet man hauptsächlich bei Kleinkindern, die an einer akuten lymphatischen Leukämie erkrankt sind, aber auch bei älteren Patienten mit einer Sekundärleukämie. Die leukämischen Blasten dieser Patienten sind meist gegen konventionelle Therapiekonzepte resistent, was zu einer ungewöhnlich schlechten Prognose führt. Die Chromosomenbande 11q23 ist an einer Vielzahl chromosomaler Translokationen beteiligt. Die dadurch erzeugten reziproken MLL-Fusiongene sind alle mit der Entstehung einer Hochrisikoleukämie korreliert. Für einige der dabei entstehenden Fusionsproteine konnte nach retroviraler Transduktion in hämatopoietische Vorläuferzellen gezeigt werden, dass sie onkogenes Potential besitzen und eine myeloische Leukämie in transgenen oder transienten Mausmodellen initiieren können. Für die Produkte einer Translokation t(4;11) konnte dies bislang nicht erfolgreich untersucht werden. Bei der Translokation t(4;11) werden die beiden Partnergene MLL und AF4 so miteinander verknüpft, dass auf den neu gebildeten Derivatchromosomen zwei Fusionsgene (MLL•AF4 und AF4•MLL) mit einem intakten Leserahmen entstehen. Da man in den leukämischen Blasten im Regelfall beide Fusionstranskripte findet, nehmen wir an, dass beide Genprodukte zur Fehlregulation und Entartung der Zelle beitragen. Um den potentiell onkogenen Wirkmechanismus der t(4;11) Translokation zu untersuchen, wurde ein induzierbares Expressions-System in murinen embryonalen Fibroblasten (MEF) etabliert. Anhand dieses Zellsystems gelang es das potententielle onkogene Potential der Fusionsproteine MLL•AF4 und AF4•MLL, bzw.des Wildtyp AF4 Proteins in Focus Formation Assays sichtbar zu machen. Dabei konnte die Bildung zellulärer Foci eindrucksvoll für das Wildtyp AF4 Protein und das AF4•MLL Fusionsprotein dargestellt werden. Das MLL•AF4 Fusionsprotein war nicht in der Lage den Verlust der Kontaktinhibition und damit Focus-Bildung in den Zellen zu initiieren. Die anschließende Definition des AF4 Wildtyp- und AF4•MLL Fusionsproteins als Proto-/Onkoprotein, führte zu der Arbeitshypothese, dass der Nterminale Bereich des AF4 Proteins (AF4•N) Wachstums-transformierendes Potential besitzt. Aufgrund der vorliegenden Daten und zur genaueren Charakterisierung des AF4 Proteins wurden anschließend Interaktions-Studien mit dem AF4•N Protein durchgeführt, wobei die beiden E3 Ubiquitin Ligasen SIAH1 und SIAH2 als Interaktionspartner des AF4•N Proteins identifiziert wurden. E3 Ubiquitin Ligasen sind wichtige Bestandteile der Ubiquitinylierungs-Maschinerie und der damit verbundenen proteasomalen Degradation. Dabei sind die SIAH Proteine, wie alle E3 Ubiquitin Ligasen, für die Spezifität der Proteasom-abhängigen Degradation verantwortlich, indem sie über ihre Substrat-Binde Domäne im C-Terminus mit den abzubauenden Targetproteinen interagieren. Die spezifische Interaktion der SIAH Proteine mit dem AF4•N Protein konnte in unabhängigen Experimenten sowohl in vitro als auch in vivo bestätigt werden. Durch den Einsatz des Proteasom-Inhibitors MG132 konnte zudem der effiziente, SIAH1-vermittelte und Proteasom-abhängige Abbau von AF4•N demonstriert werden. Mit weiterführenden Experimenten konnte auch für das Wildtyp AF4 Protein und für das AF4•MLL Fusionsprotein eine Regulation der Proteinstabilität über das SIAH1 Protein festgestellt werden. Eine SIAH1-vermittelte Degradation ist jedoch nur auf das AF4•MLL full-length Fusionsprotein beschränkt. Eine proteolytische Spaltung des AF4•MLL Fusionsproteins durch die Protease Taspase1 innerhalb des MLL Fusionsanteils führte zur Bildung eines stabilen der4•N/MLL•C Proteinkomplexes und dessen Akkumulation in den Zellen. Basierend auf diesen Ergebnissen konnte für t(4;11) Translokationen ein erster pathomolekularer Mechanismus zur Leukämie-Entstehung aufgezeigt werden. Dieser beruht im wesentlichen auf der Akkumulation des der4•N/MLL•C Proteinkomplexes, welcher sich der effizienten Kontrolle durch die E3 Ubiquitin Ligase SIAH1 entzieht. Dadurch wird der Wachstums-transformierende AF4•N Proteinanteil in die Lage versetzt sein onkogenes Potential zu vermitteln

    Protein network study of human AF4 reveals its central role in RNA Pol II-mediated transcription and in phosphorylation-dependent regulatory mechanisms

    Get PDF
    AF4 belongs to a family of proteins implicated in childhood lymphoblastic leukaemia, FRAXE (Fragile X E site) mental retardation and ataxia. AF4 is a transcriptional activator that is involved in transcriptional elongation. Although AF4 has been implicated in MLL (mixed-lineage leukaemia)-related leukaemogenesis, AF4-dependent physiological mechanisms have not been clearly defined. Proteins that interact with AF4 may also play important roles in mediating oncogenesis, and are potential targets for novel therapies. Using a functional proteomic approach involving tandem MS and bioinformatics, we identified 51 AF4-interacting proteins of various Gene Ontology categories. Approximately 60% participate in transcription regulatory mechanisms, including the Mediator complex in eukaryotic cells. In the present paper we report one of the first extensive proteomic studies aimed at elucidating AF4 protein cross-talk. Moreover, we found that the AF4 residues Thr220 and Ser212 are phosphorylated, which suggests that AF4 function depends on phosphorylation mechanisms. We also mapped the AF4-interaction site with CDK9 (cyclin-dependent kinase 9), which is a direct interactor crucial for the function and regulation of the protein. The findings of the present study significantly expand the number of putative members of the multiprotein complex formed by AF4, which is instrumental in promoting the transcription/elongation of specific genes in human cells

    Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors

    Get PDF
    Background: Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1's (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available. Methodology/Findings: Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm, whereas expression of biologically active Taspase1 but not of inactive Taspase1 mutants or of the protease Caspase3 triggers their proteolytic cleavage and nuclear accumulation. Compared to in vitro assays using recombinant components the in vivo assay was highly efficient. Employing an optimized nuclear translocation algorithm, the triple-color assay could be adapted to a high-throughput microscopy platform (Z'factor = 0.63). Automated high-content data analysis was used to screen a focused compound library, selected by an in silico pharmacophor screening approach, as well as a collection of fungal extracts. Screening identified two compounds, N-[2-[(4-amino-6-oxo-3H-pyrimidin-2-yl)sulfanyl]ethyl]benzenesulfonamideand 2-benzyltriazole-4,5-dicarboxylic acid, which partially inhibited Taspase1 cleavage in living cells. Additionally, the assay was exploited to probe endogenous Taspase1 in solid tumor cell models and to identify an improved consensus sequence for efficient Taspase1 cleavage. This allowed the in silico identification of novel putative Taspase1 targets. Those include the FERM Domain-Containing Protein 4B, the Tyrosine-Protein Phosphatase Zeta, and DNA Polymerase Zeta. Cleavage site recognition and proteolytic processing of these substrates were verified in the context of the biosensor. Conclusions: The assay not only allows to genetically probe Taspase1 structure function in vivo, but is also applicable for high-content screening to identify Taspase1 inhibitors. Such tools will provide novel insights into Taspase1's function and its potential therapeutic relevance

    Methods for effective teaching

    No full text
    xiv, 418 p. : il.; 23 cm

    The ongoing conundrum of MLL-AF4 driven leukemogenesis

    No full text

    The AF4·MLL fusion protein is capable of inducing ALL in mice without requirement of MLL·AF4

    No full text
    The chromosomal translocation t(4;11)(q21;q23) is the most frequent genetic aberration of the human MLL gene, resulting in high-risk acute lymphoblastic leukemia (ALL). To elucidate the leukemogenic potential of the fusion proteins MLL.AF4 and AF4.MLL, Lin(-)/Sca1(+) purified cells (LSPCs) were retrovirally transduced with either both fusion genes or with MLL.AF4 or AF4.MLL alone. Recipients of AF4.MLL- or double-transduced LSPCs developed pro-B ALL, B/T biphenotypic acute leukemia, or mixed lineage leukemia. Transplantation of MLL.AF4- or mock-transduced LSPCs did not result in disease development during an observation period of 13 months. These findings indicate that the expression of the AF4.MLL fusion protein is capable of inducing acute lymphoblastic leukemia even in the absence of the MLL.AF4 fusion protein. In view of recent findings, these results may imply that t(4;11) leukemia is based on 2 oncoproteins, providing an explanation for the very early onset of disease in humans

    MLL-SEPT5

    No full text
    corecore