318 research outputs found
Threshold effects of habitat fragmentation on fish diversity at landscapes scales
Habitat fragmentation involves habitat loss concomitant with changes in spatial configuration, confounding mechanistic drivers of biodiversity change associated with habitat disturbance. Studies attempting to isolate the effects of altered habitat configuration on associated communities have reported variable results. This variability may be explained in part by the fragmentation threshold hypothesis, which predicts that the effects of habitat configuration may only manifest at low levels of remnant habitat area. To separate the effects of habitat area and configuration on biodiversity, we surveyed fish communities in seagrass landscapes spanning a range of total seagrass area (2-74% cover within 16 000-m2 landscapes) and spatial configurations (1-75 discrete patches). We also measured variation in fine-scale seagrass variables, which are known to affect faunal community composition and may covary with landscape-scale features. We found that species richness decreased and the community structure shifted with increasing patch number within the landscape, but only when seagrass area was low (<25% cover). This pattern was driven by an absence of epibenthic species in low-seagrass-area, highly patchy landscapes. Additional tests corroborated that low movement rates among patches may underlie loss of vulnerable taxa. Fine-scale seagrass biomass was generally unimportant in predicting fish community composition. As such, we present empirical support for the fragmentation threshold hypothesis and we suggest that poor matrix quality and low dispersal ability for sensitive taxa in our system may explain why our results support the hypothesis, while previous empirical work has largely failed to match predictions
Phenomenology of Pc(4380)+, Pc(4450)+ and related states
The and states recently discovered at LHCb have
masses close to several relevant thresholds, which suggests they can be
described in terms of meson-baryon degrees of freedom. This article explores
the phenomenology of these states, and their possible partners, from this point
of view. Competing models can be distinguished by the masses of the neutral
partners which have yet to be observed, and the existence or otherwise of
further partners with different isospin, spin, and parity. Future experimental
studies in different decay channels can also discriminate among models, using
selection rules and algebraic relations among decays. Among the several
possible meson-baryon pairs which could be important, one implies that the
states are mixtures of isospins 1/2 and 3/2, with characteristic signatures in
production and decay. A previous experimental study of a Cabibbo-suppressed
decay showed no evidence for the states, and further analysis is required to
establish the significance of this non-observation. Several intriguing
similarities suggest that is related to the meson.Comment: 16 pages, 1 figure. Journal version (some very minor changes from
arXiv v1
A lower bound on the local extragalactic magnetic field
Assuming that the hard gamma-ray emission of Cen A is a result of synchrotron
radiation of ultra-relativistic electrons, we derive a lower bound on the local
extragalactic magnetic field, G. This result is consistent with
(and close to) upper bounds on magnetic fields derived from consideration of
cosmic microwave background distortions and Faraday rotation measurements.Comment: Includes extensive discussion of particle acceleration above 10^20 eV
in the hot spot-like region of Cen
The Kuiper Belt and Other Debris Disks
We discuss the current knowledge of the Solar system, focusing on bodies in
the outer regions, on the information they provide concerning Solar system
formation, and on the possible relationships that may exist between our system
and the debris disks of other stars. Beyond the domains of the Terrestrial and
giant planets, the comets in the Kuiper belt and the Oort cloud preserve some
of our most pristine materials. The Kuiper belt, in particular, is a
collisional dust source and a scientific bridge to the dusty "debris disks"
observed around many nearby main-sequence stars. Study of the Solar system
provides a level of detail that we cannot discern in the distant disks while
observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book
"Astrophysics in the Next Decade
Is symmetry identity?
Wigner found unreasonable the "effectiveness of mathematics in the natural
sciences". But if the mathematics we use to describe nature is simply a coded
expression of our experience then its effectiveness is quite reasonable. Its
effectiveness is built into its design. We consider group theory, the logic of
symmetry. We examine the premise that symmetry is identity; that group theory
encodes our experience of identification. To decide whether group theory
describes the world in such an elemental way we catalogue the detailed
correspondence between elements of the physical world and elements of the
formalism. Providing an unequivocal match between concept and mathematical
statement completes the case. It makes effectiveness appear reasonable. The
case that symmetry is identity is a strong one but it is not complete. The
further validation required suggests that unexpected entities might be
describable by the irreducible representations of group theory
Using SDRT to analyze pathological conversations. Logicality, rationality and pragmatic deviances
International audienceSchizophrenia is well-known among mental illnesses for the severity of the thought dis- orders it involves, and for their widespread and spectacular manifestations ranging from deviant social behavior to delusion, not to mention affective and sensory distortions. Confronted with such a pathological con- versation, any "ordinary" speaker intuitively feels that there are some incoherencies or discontinuities. The aim of this research is to account for these using both pragmatics and formal semantics. Linguistics, especially semantics and pragmatics, is thus central to this work
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Psychosocial Treatment of Children in Foster Care: A Review
A substantial number of children in foster care exhibit psychiatric difficulties. Recent epidemiologi-cal and historical trends in foster care, clinical findings about the adjustment of children in foster care, and adult outcomes are reviewed, followed by a description of current approaches to treatment and extant empirical support. Available interventions for these children can be categorized as either symptom-focused or systemic, with empirical support for specific methods ranging from scant to substantial. Even with treatment, behavioral and emotional problems often persist into adulthood, resulting in poor functional outcomes. We suggest that self-regulation may be an important mediat-ing factor in the appearance of emotional and behavioral disturbance in these children
- âŠ