599 research outputs found

    Medical Data Architecture Prototype Development - Summary of Recent Work and Proposed Ideas for Upcoming Work

    Get PDF
    The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions, and in ExMC Gap Med 10: We do not have the capability to provide computed medical decision support during exploration missions. These gaps recognize the need for a comprehensive medical data management system and the accompanying computational support to provide autonomous medical care during long duration exploration missions. As the MDA maturesincluding the capability to comprehensively process and discover medically-relevant information to support medical operations during exploration missionsproject focus will shift to maturing and extending the MDA platform to enable clinical decision support and real-time guidance. To date, the MDA foundational architecture has recommended exploration medical system Level of Care IV requirements through a series of test bed prototype developments and analog demonstrations. The next stage in the development will focus on more autonomous clinical decision making necessary to address challenges in executing a self-contained medical system that enables health care both with and without assistance from ground support. A thorough understanding of current state of medical decision support systems, advanced machine learning algorithms and vast and varied data sources is required. The development of a clinical decision support for exploration missions (Level of Care V) roadmap is needed: one that assesses of current state of the art of clinical decision support systems (CDSS), interoperability issues, identification of challenges in health and performance monitoring, obtaining and processing information from biosensors, knowledge and data management, data integration and fusion, and advanced algorithm development. This roadmap must also include rapid prototype development in the areas of data processing, advanced analysis and prediction of medical events, and treatment based on medically relevant information processing and evidence-based best practices. In this presentation, an overview of the relevant issues and the beginning framework of a Level of Care V CDSS development roadmap will be provided

    Impact of the WHO Surgical Safety Checklist Relative to Its Design and Intended Use: A Systematic Review and Meta-Meta-Analysis

    Get PDF
    BackgroundThe aim of this study was to identify what parts of the World Health Organization Surgical Safety Checklist (WHO SSC) are working, what can be done to make it more effective, and to determine if it achieved its intended effect relative to its design and intended use. Study DesignWe conducted a qualitative thematic analysis and meta-meta-analyses of findings in WHO SSC systematic reviews following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Results Twenty systematic reviews were included for qualitative thematic analysis. Narrative information was coded in 4 primary areas with a focus on impact of the WHO SSC. Four themes—Clinical Outcomes, Process Measures, Team Dynamics and Communication, and Safety Culture—pertained directly to the aims or purposes behind the development of the SSC. The other 2 themes—Efficiency and Workload involved in using the checklist and Checklist Impact on Institutional Practices—are associated with SSC use, but were not focal areas considered during its development. Included in the 20 systematic reviews were 24 unique observational cohort studies that reported pre-post data on a total of 18 clinical outcomes. Mortality, morbidity, surgical site infection, pneumonia, unplanned return to the operating room, urinary tract infection, blood loss requiring transfusion, unplanned intubation, and sepsis favored the use of the WHO SSC. Deep vein thrombosis was the only postoperative outcome assessed that did not favor use of the WHO SSC. ConclusionsThe WHO SSC positively impacts the things it was explicitly designed to address and does not positively impact things it was not explicitly designed for

    Angular distribution of N-doped carbon nanotubes in alumina membrane channels : A high-energy X-ray diffraction study

    Get PDF
    An alignment study of multi-wall N-doped carbon nanotubes prepared by a template pyrolytic carbon deposition method inside channels of an alumina membrane has been performed using high-energy X-ray diffraction on the ID15B beamline at the European Synchrotron Radiation Facility (ESRF, Grenoble). The two-dimensional diffraction pattern of the deposited carbon nanotubes, recorded directly, within the alumina membrane, using an image plate detector, exhibits two non-continuous arcs corresponding to the 002 graphitic reflection. The following values of the angle between the axis of the carbon nanotubes lying along the membrane channels and the incident beam were taken for five positions: 0±, 30±, 45±, 60± and 90±. The anisotropic scattering distribution of the two-dimensional patterns indicates an orientational alignment of the nanotubes. The one-dimensional intensity patterns obtained by scanning around the circumference of the (0 0 2) ring have allowed an estimation of the angular distribution of the nanotubes axes

    Somatization among ethnic minorities and immigrants: Why does it matter to Consultation Liaison Psychiatry?

    Get PDF
    The article describes the reasons why psychiatrists working in the field of consultation-liaison should be trained and aware of the relevance of culture in their everyday work. Moreover, the article aims at advertising the special-interest group on cultural CLP, a network of clinicians and researchers within the European Association of Psychosomatic Medicine that share their interest and activities in this subject

    A somatic genetic clock for clonal species.

    Get PDF
    Age and longevity are key parameters for demography and life-history evolution of organisms. In clonal species, a widespread life history among animals, plants, macroalgae and fungi, the sexually produced offspring (genet) grows indeterminately by producing iterative modules, or ramets, and so obscure their age. Here we present a novel molecular clock based on the accumulation of fixed somatic genetic variation that segregates among ramets. Using a stochastic model, we demonstrate that the accumulation of fixed somatic genetic variation will approach linearity after a lag phase, and is determined by the mitotic mutation rate, without direct dependence on asexual generation time. The lag phase decreased with lower stem cell population size, number of founder cells for the formation of new modules, and the ratio of symmetric versus asymmetric cell divisions. We calibrated the somatic genetic clock on cultivated eelgrass Zostera marina genets (4 and 17 years respectively). In a global data set of 20 eelgrass populations, genet ages were up to 1,403 years. The somatic genetic clock is applicable to any multicellular clonal species where the number of founder cells is small, opening novel research avenues to study longevity and, hence, demography and population dynamics of clonal species

    Incidental vertebral fracture prediction using neuronal network-based automatic spine segmentation and volumetric bone mineral density extraction from routine clinical CT scans.

    Get PDF
    OBJECTIVES To investigate vertebral osteoporotic fracture (VF) prediction by automatically extracted trabecular volumetric bone mineral density (vBMD) from routine CT, and to compare the model with fracture prevalence-based prediction models. METHODS This single-center retrospective study included patients who underwent two thoraco-abdominal CT scans during clinical routine with an average inter-scan interval of 21.7 ± 13.1 months (range 5-52 months). Automatic spine segmentation and vBMD extraction was performed by a convolutional neural network framework (anduin.bonescreen.de). Mean vBMD was calculated for levels T5-8, T9-12, and L1-5. VFs were identified by an expert in spine imaging. Odds ratios (ORs) for prevalent and incident VFs were calculated for vBMD (per standard deviation decrease) at each level, for baseline VF prevalence (yes/no), and for baseline VF count (n) using logistic regression models, adjusted for age and sex. Models were compared using Akaike's and Bayesian information criteria (AIC & BIC). RESULTS 420 patients (mean age, 63 years ± 9, 276 males) were included in this study. 40 (25 female) had prevalent and 24 (13 female) had incident VFs. Individuals with lower vBMD at any spine level had higher odds for VFs (L1-5, prevalent VF: OR,95%-CI,p: 2.2, 1.4-3.5,p=0.001; incident VF: 3.5, 1.8-6.9,p<0.001). In contrast, VF status (2.15, 0.72-6.43,p=0.170) and count (1.38, 0.89-2.12,p=0.147) performed worse in incident VF prediction. Information criteria revealed best fit for vBMD-based models (AIC vBMD=165.2; VF status=181.0; count=180.7). CONCLUSIONS VF prediction based on automatically extracted vBMD from routine clinical MDCT outperforms prediction models based on VF status and count. These findings underline the importance of opportunistic quantitative osteoporosis screening in clinical routine MDCT data
    • 

    corecore