780 research outputs found
Mid-Infrared Spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 2. Determination of the Mean Composition of the Upper Troposphere and Stratosphere
Mid-infrared spectral observations Uranus acquired with the Infrared
Spectrometer (IRS) on the Spitzer Space Telescope are used to determine the
abundances of C2H2, C2H6, CH3C2H, C4H2, CO2, and tentatively CH3 on Uranus at
the time of the 2007 equinox. For vertically uniform eddy diffusion
coefficients in the range 2200-2600 cm2 s-1, photochemical models that
reproduce the observed methane emission also predict C2H6 profiles that compare
well with emission in the 11.6-12.5 micron wavelength region, where the nu9
band of C2H6 is prominent. Our nominal model with a uniform eddy diffusion
coefficient Kzz = 2430 cm2 sec-1 and a CH4 tropopause mole fraction of 1.6x10-5
provides a good fit to other hydrocarbon emission features, such as those of
C2H2 and C4H2, but the model profile for CH3C2H must be scaled by a factor of
0.43, suggesting that improvements are needed in the chemical reaction
mechanism for C3Hx species. The nominal model is consistent with a CH3D/CH4
ratio of 3.0+-0.2x10-4. From the best-fit scaling of these photochemical-model
profiles, we derive column abundances above the 10-mbar level of 4.5+01.1/-0.8
x 10+19 molecule-cm-2 for CH4, 6.2 +- 1.0 x 10+16 molecule-cm-2 for C2H2 (with
a value 24% higher from a different longitudinal sampling), 3.1 +- 0.3 x 10+16
molecule-cm-2 for C2H6, 8.6 +- 2.6 x 10+13 molecule-cm-2 for CH3C2H, 1.8 +- 0.3
x 10+13 molecule-cm-2 for C4H2, and 1.7 +- 0.4 x 10+13 molecule-cm-2 for CO2 on
Uranus. Our results have implications with respect to the influx rate of
exogenic oxygen species and the production rate of stratospheric hazes on
Uranus, as well as the C4H2 vapor pressure over C4H2 ice at low temperatures
Ein gekoppeltes Atmosphäre-Ozean-Modell für das Ostsee-Einzugsgebiet
textabstractWe show that Connesʼ embedding conjecture (CEC) is equivalent to a real version of the same (RCEC). Moreover, we show that RCEC is equivalent to a real, purely algebraic statement concerning trace positive polynomials. This purely algebraic reformulation of CEC had previously been given in both a real and a complex version in a paper of the last two authors. The second author discovered a gap in this earlier proof of the equivalence of CEC to the real algebraic reformulation (the proof of the complex algebraic reformulation being correct). In this note, we show that this gap can be filled with help of the theory of real von Neumann algebras
Inferring statistics of planet populations by means of automated microlensing searches
(abridged) The study of other worlds is key to understanding our own, and not
only provides clues to the origin of our civilization, but also looks into its
future. Rather than in identifying nearby systems and learning about their
individual properties, the main value of the technique of gravitational
microlensing is in obtaining the statistics of planetary populations within the
Milky Way and beyond. Only the complementarity of different techniques
currently employed promises to yield a complete picture of planet formation
that has sufficient predictive power to let us understand how habitable worlds
like ours evolve, and how abundant such systems are in the Universe. A
cooperative three-step strategy of survey, follow-up, and anomaly monitoring of
microlensing targets, realized by means of an automated expert system and a
network of ground-based telescopes is ready right now to be used to obtain a
first census of cool planets with masses reaching even below that of Earth
orbiting K and M dwarfs in two distinct stellar populations, namely the
Galactic bulge and disk. The hunt for extra-solar planets acts as a principal
science driver for time-domain astronomy with robotic-telescope networks
adopting fully-automated strategies. Several initiatives, both into facilities
as well as into advanced software and strategies, are supposed to see the
capabilities of gravitational microlensing programmes step-wise increasing over
the next 10 years. New opportunities will show up with high-precision
astrometry becoming available and studying the abundance of planets around
stars in neighbouring galaxies becoming possible. Finally, we should not miss
out on sharing the vision with the general public, and make its realization to
profit not only the scientists but all the wider society.Comment: 10 pages in PDF format. White paper submitted to ESA's Exo-Planet
Roadmap Advisory Team (EPR-AT); typos corrected. The embedded figures are
available from the author on request. See also "Towards A Census of
Earth-mass Exo-planets with Gravitational Microlensing" by J.P. Beaulieu, E.
Kerins, S. Mao et al. (arXiv:0808.0005
Discovery of Highly Obscured Galaxies in the Zone of Avoidance
We report the discovery of twenty-five previously unknown galaxies in the
Zone of Avoidance. Our systematic search for extended extra-galactic sources in
the GLIMPSE and MIPSGAL mid-infrared surveys of the Galactic plane has revealed
two overdensities of these sources, located around l ~ 47 and 55 degrees and
|b| less than 1 degree in the Sagitta-Aquila region. These overdensities are
consistent with the local large-scale structure found at similar Galactic
longitude and extending from |b| ~ 4 to 40 degrees. We show that the infrared
spectral energy distribution of these sources is indeed consistent with those
of normal galaxies. Photometric estimates of their redshift indicate that the
majority of these galaxies are found in the redshift range z = 0.01 - 0.05,
with one source located at z = 0.07. Comparison with known sources in the local
Universe reveals that these galaxies are located at similar overdensities in
redshift space. These new galaxies are the first evidence of a bridge linking
the large-scale structure between both sides of the Galactic plane at very low
Galactic latitude and clearly demonstrate the feasibility of detecting galaxies
in the Zone of Avoidance using mid-to-far infrared surveys.Comment: Accepted for publication in the Astronomical Journal, 28 pages, 5
tables, 11 figure
Structure and Colors of Diffuse Emission in the Spitzer Galactic First Look Survey
We investigate the density structure of the interstellar medium using new
high-resolution maps of the 8 micron, 24 micron, and 70 micron surface
brightness towards a molecular cloud in the Gum Nebula, made as part of the
Spitzer Space Telescope Galactic First Look Survey. The maps are correlated
with 100 micron images measured with IRAS. At 24 and 70 micron, the spatial
power spectrum of surface brightness follows a power law with spectral index
-3.5. At 24 micron, the power law behavior is remarkably consistent from the
0.2 degree size of our maps down to the 5 arcsecond spatial resolution. Thus,
the structure of the 24 micron emission is self-similar even at milliparsec
scales. The combined power spectrum produced from Spitzer 24 micron and IRAS 25
micron images is consistent with a change in the power law exponent from -2.6
to -3.5. The decrease may be due to the transition from a two-dimensional to
three-dimensional structure. Under this hypothesis, we estimate the thickness
of the emitting medium to be 0.3 pc.Comment: 13 Pages, 3 Figures, to be published in Astrophysical Journal
Supplement Series (Spitzer Special Issue), volume 154. Uses aastex v5.
Microlens OGLE-2005-BLG-169 Implies Cool Neptune-Like Planets are Common
We detect a Neptune mass-ratio (q~8e-5) planetary companion to the lens star
in the extremely high-magnification (A~800) microlensing event
OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M~0.5
M_sun implying a planet mass of ~13 M_earth and projected separation of ~2.7
AU. When intensely monitored over their peak, high-magnification events similar
to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass-ratio
planets with projected separations of 0.6 to 1.6 Einstein radii, corresponding
to 1.6--4.3 AU in the present case. Only two other such events were monitored
well enough to detect Neptunes, and so this detection by itself suggests that
Neptune mass-ratio planets are common. Moreover, another Neptune was recently
discovered at a similar distance from its parent star in a low-magnification
event, which are more common but are individually much less sensitive to
planets. Combining the two detections yields 90% upper and lower frequency
limits f=0.37^{+0.30}_{-0.21} over just 0.4 decades of planet-star separation.
In particular, f>16% at 90% confidence. The parent star hosts no Jupiter-mass
companions with projected separations within a factor 5 of that of the detected
planet. The lens-source relative proper motion is \mu~7--10 mas/yr, implying
that if the lens is sufficiently bright, I<23.8, it will be detectable by HST
by 3 years after peak. This would permit a more precise estimate of the lens
mass and distance, and so the mass and projected separation of the planet.
Analogs of OGLE-2005-BLG-169Lb orbiting nearby stars would be difficult to
detect by other methods of planet detection, including radial velocities,
transits, or astrometry.Comment: Submitted to ApJ Letters, 9 text pages + 4 figures + 1 tabl
Recommended from our members
Thermal H<sub>2</sub>O emission from the Herbig-Haro flow HH 54
The first detection of thermal water emission from a Herbig-Haro object is presented. The observations were performed with the LWS (Long Wavelength Spectrograph) aboard ISO (Infrared Space Observatory). Besides H2O, rotational lines of CO are present in the spectrum of HH 54. These high-J CO lines are used to derive the physical model parameters of the FIR (far-infrared) molecular line emitting regions. This model fits simultaneously the observed OH and H2O spectra for an OH abundance X(OH)=10-6 and a water vapour abundance X(H2O)=10-5.
At a distance of 250pc, the total CO, OH and H2O rotational line cooling rate is estimated to be 1.3x10-2 L⊙, which is comparable to the mechanical luminosity generated by the 10km s-1 shocks, suggesting that practically all of the cooling of the weak-shock regions is done by these three molecular species alone
OGLE-2005-BLG-153: Microlensing Discovery and Characterization of A Very Low Mass Binary
The mass function and statistics of binaries provide important diagnostics of
the star formation process. Despite this importance, the mass function at low
masses remains poorly known due to observational difficulties caused by the
faintness of the objects. Here we report the microlensing discovery and
characterization of a binary lens composed of very low-mass stars just above
the hydrogen-burning limit. From the combined measurements of the Einstein
radius and microlens parallax, we measure the masses of the binary components
of and . This discovery
demonstrates that microlensing will provide a method to measure the mass
function of all Galactic populations of very low mass binaries that is
independent of the biases caused by the luminosity of the population.Comment: 6 pages, 3 figures, 1 tabl
A systematic fitting scheme for caustic-crossing microlensing events
We outline a method for fitting binary-lens caustic-crossing microlensing
events based on the alternative model parameterisation proposed and detailed in
Cassan (2008). As an illustration of our methodology, we present an analysis of
OGLE-2007-BLG-472, a double-peaked Galactic microlensing event with a source
crossing the whole caustic structure in less than three days. In order to
identify all possible models we conduct an extensive search of the parameter
space, followed by a refinement of the parameters with a Markov Chain-Monte
Carlo algorithm. We find a number of low-chi2 regions in the parameter space,
which lead to several distinct competitive best models. We examine the
parameters for each of them, and estimate their physical properties. We find
that our fitting strategy locates several minima that are difficult to find
with other modelling strategies and is therefore a more appropriate method to
fit this type of events.Comment: 12 pages, 11 figure
Limits on additional planetary companions to OGLE-2005-BLG-390L
We investigate constraints on additional planets orbiting the distant M-dwarf
star OGLE-2005-BLG-390L, around which photometric microlensing data has
revealed the existence of the sub-Neptune-mass planet OGLE-2005-BLG-390Lb. We
specifically aim to study potential Jovian companions and compare our findings
with predictions from core-accretion and disc-instability models of planet
formation. We also obtain an estimate of the detection probability for
sub-Neptune mass planets similar to OGLE-2005-BLG-390Lb using a simplified
simulation of a microlensing experiment. We compute the efficiency of our
photometric data for detecting additional planets around OGLE-2005-BLG-390L, as
a function of the microlensing model parameters and convert it into a function
of the orbital axis and planet mass by means of an adopted model of the Milky
Way. We find that more than 50 % of potential planets with a mass in excess of
1 M_J between 1.1 and 2.3 AU around OGLE-2005-BLG-390L would have revealed
their existence, whereas for gas giants above 3 M_J in orbits between 1.5 and
2.2 AU, the detection efficiency reaches 70 %; however, no such companion was
observed. Our photometric microlensing data therefore do not contradict the
existence of gas giant planets at any separation orbiting OGLE-2005-BLG-390L.
Furthermore we find a detection probability for an OGLE-2005-BLG-390Lb-like
planet of around 2-5 %. In agreement with current planet formation theories,
this quantitatively supports the prediction that sub-Neptune mass planets are
common around low-mass stars.Comment: 10 pages, 4 figures, accepted by A&
- …