36 research outputs found

    Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna

    No full text
    The definitive version is available at ww3.interscience.wiley.com. Post-print en libre-accès sur Archimer : http://archimer.ifremer.fr/doc/00006/11704/8475.pdfInternational audienceInvestigations of the diversity of culturable yeasts at deep-sea hydrothermal sites have suggested possible interactions with endemic fauna. Samples were collected during various oceanographic cruises at the Mid-Atlantic Ridge, South Pacific Basins and East Pacific Rise. Cultures of 32 isolates, mostly associated with animals, were collected. Phylogenetic analyses of 26S rRNA gene sequences revealed that the yeasts belonged to Ascomycota and Basidiomycota phyla, with the identification of several genera: Rhodotorula, Rhodosporidium, Candida, Debaryomyces and Cryptococcus. Those genera are usually isolated from deep-sea environments. To our knowledge, this is the first report of yeasts associated with deep-sea hydrothermal animals

    Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 846, doi:10.3389/fmicb.2016.00846.The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.This work was supported by Deep Carbon Observatory subaward #48550 to VE, and NSF Center for Deep Energy Biosphere Investigations (CDEBI) grant OCE-0939564 to VE and GB. GB was also supported by the European project MaCuMBA (Marine Microorganisms: Cultivation Methods for Improving Their Biotechnological Applications, FP7, Grant agreement number 311975)

    Revisiting the pink-red pigmented basidiomycete mirror yeast of the phyllosphere

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in MicrobiologyOpen 5 (2016): 846–855, doi:10.1002/mbo3.374.By taking advantage of the ballistoconidium-forming capabilities of members of the genus Sporobolomyces, we recovered ten isolates from deciduous tree leaves collected from Vermont and Washington, USA. Analysis of the small subunit ribosomal RNA gene and the D1/D2 domain of the large subunit ribosomal RNA gene indicate that all isolates are closely related. Further analysis of their physiological attributes shows that all were similarly pigmented yeasts capable of growth under aerobic and microaerophilic conditions, all were tolerant of repeated freezing and thawing, minimally tolerant to elevated temperature and desiccation, and capable of growth in liquid or on solid media containing pectin or galacturonic acid. The scientific literature on ballistoconidium-forming yeasts indicates that they are a polyphyletic group. Isolates of Sporobolomyces from two geographically separated sites show almost identical phenotypic and physiological characteristics and a monophyly with a broad group of differently named Sporobolomyces/Sporidiobolus species based on both small subunit ribosomal RNA (SSU rRNA) and D1/D2 domains of the LSU rRNA gene sequences

    Highlighting the biotechnological potential of deep oceanic crust fungi through the prism of their antimicrobial activity

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Quemener, M., Dayras, M., Frotté, N., Debaets, S., Le Meur, C., Barbier, G., Edgcomb, V., Mehiri, M., & Burgaud, G. Highlighting the biotechnological potential of deep oceanic crust fungi through the prism of their antimicrobial activity. Marine Drugs, 19(8), (2021): 411, https://doi.org/10.3390/md19080411.Among the different tools to address the antibiotic resistance crisis, bioprospecting in complex uncharted habitats to detect novel microorganisms putatively producing original antimicrobial compounds can definitely increase the current therapeutic arsenal of antibiotics. Fungi from numerous habitats have been widely screened for their ability to express specific biosynthetic gene clusters (BGCs) involved in the synthesis of antimicrobial compounds. Here, a collection of unique 75 deep oceanic crust fungi was screened to evaluate their biotechnological potential through the prism of their antimicrobial activity using a polyphasic approach. After a first genetic screening to detect specific BGCs, a second step consisted of an antimicrobial screening that tested the most promising isolates against 11 microbial targets. Here, 12 fungal isolates showed at least one antibacterial and/or antifungal activity (static or lytic) against human pathogens. This analysis also revealed that Staphylococcus aureus ATCC 25923 and Enterococcus faecalis CIP A 186 were the most impacted, followed by Pseudomonas aeruginosa ATCC 27853. A specific focus on three fungal isolates allowed us to detect interesting activity of crude extracts against multidrug-resistant Staphylococcus aureus. Finally, complementary mass spectrometry (MS)-based molecular networking analyses were performed to putatively assign the fungal metabolites and raise hypotheses to link them to the observed antimicrobial activities.This study was funded by National Science Foundation grants OCE-1658031 to Virginia Edgcomb. Fungal isolates were obtained from the Université de Bretagne Occidentale Culture Collection (UBOCC, Plouzané, France, www.univ-brest.fr/ubocc, accessed date in July 2021) and AmelieWeill is acknowledged here as head of the UBOCC

    Recent progress in marine mycological research in different countries, and prospects for future developments worldwide

    Get PDF
    Early research on marine fungi was mostly descriptive, with an emphasis on their diversity and taxonomy, especially of those collected at rocky shores on seaweeds and driftwood. Subsequently, further substrata (e.g. salt marsh grasses, marine animals, seagrasses, sea foam, seawater, sediment) and habitats (coral reefs, deep-sea, hydrothermal vents, mangroves, sandy beaches, salt marshes) were explored for marine fungi. In parallel, research areas have broadened from micro-morphology to ultrastructure, ecophysiology, molecular phylogenetics, biogeography, biodeterioration, biodegradation, bioprospecting, genomics, proteomics, transcriptomics and metabolomics. Although marine fungi only constitute a small fraction of the global mycota, new species of marine fungi continue to be described from new hosts/substrata of unexplored locations/habitats, and novel bioactive metabolites have been discovered in the last two decades, warranting a greater collaborative research effort. Marine fungi of Africa, the Americas and Australasia are under-explored, while marine Chytridiomycota and allied taxa, fungi associated with marine animals, the functional roles of fungi in the sea, and the impacts of climate change on marine fungi are some of the topics needing more attention. In this article, currently active marine mycologists from different countries have written on the history and current state of marine fungal research in individual countries highlighting their strength in the subject, and this represents a first step towards a collaborative inter- and transdisciplinary research strategy

    The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy

    Get PDF
    International audienceThe interrogation of genetic markers in environmental meta-barcoding studies is currently seriously hindered by the lack of taxonomically curated reference data sets for the targeted genes. The Protist Ribosomal Reference database (PR2, http://ssu-rrna.org/) provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and DNA sequences, with curated taxonomy. The database mainly consists of nuclear-encoded protistan sequences. However, metazoans, land plants, macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are also included because they are useful for the analysis of high-troughput sequencing data sets. Introns and putative chimeric sequences have been also carefully checked. Taxonomic assignation of sequences consists of eight unique taxonomic fields. In total, 136 866 sequences are nuclear encoded, 45 708 (36 501 mitochondrial and 9657 chloroplastic) are from organelles, the remaining being putative chimeric sequences. The website allows the users to download sequences from the entire and partial databases (including representative sequences after clustering at a given level of similarity). Different web tools also allow searches by sequence similarity. The presence of both rRNA and rDNA sequences, taking into account introns (crucial for eukaryotic sequences), a normalized eight terms ranked-taxonomy and updates of new GenBank releases were made possible by a long-term collaboration between experts in taxonomy and computer scientists

    Fungal Diversity in Deep-Sea Hydrothermal Ecosystems▿ †

    No full text
    Deep-sea hydrothermal ecosystems are considered oases of life in oceans. Since the discovery of these ecosystems in the late 1970s, many endemic species of Bacteria, Archaea, and other organisms, such as annelids and crabs, have been described. Considerable knowledge has been acquired about the diversity of (micro)organisms in these ecosystems, but the diversity of fungi has not been studied to date. These organisms are considered key organisms in terrestrial ecosystems because of their ecological functions and especially their ability to degrade organic matter. The lack of knowledge about them in the sea reflects the widely held belief that fungi are terrestrial organisms. The first inventory of such organisms in deep-sea hydrothermal environments was obtained in this study. Fungal diversity was investigated by analyzing the small-subunit rRNA gene sequences amplified by culture-independent PCR using DNA extracts from hydrothermal samples and from a culture collection that was established. Our work revealed an unsuspected diversity of species in three of the five fungal phyla. We found a new branch of Chytridiomycota forming an ancient evolutionary lineage. Many of the species identified are unknown, even at higher taxonomic levels in the Chytridiomycota, Ascomycota, and Basidiomycota. This work opens the way to new studies of the diversity, ecology, and physiology of fungi in oceans and might stimulate new prospecting for biomolecules. From an evolutionary point of view, the diversification of fungi in the oceans can no longer be ignored
    corecore