10 research outputs found

    Long term variability of the Broad Emission Line profiles in AGN

    Full text link
    Results of a long-term monitoring (10\gtrsim 10 years) of the broad line and continuum fluxes of three Active Galactic Nuclei (AGN), 3C 390.3, NGC 4151, and NGC 5548, are presented. We analyze the Hα\alpha and Hβ\beta profile variations during the monitoring period and study different details (as bumps, absorption bands) which can indicate structural changes in the Broad Line Region (BLR). The BLR dimensions are estimated using the time lags between the continuum and the broad lines flux variations. We find that in the case of 3C 390.3 and NGC 5548 a disk geometry can explain both the broad line profiles and their flux variations, while the BLR of NGC 4151 seems more complex and is probably composed of two or three kinematically different regions.Comment: 10 pages, 9 figures, New Astronomy Reviews (Proceeding of 7th SCSLSA), in pres

    First experimental results obtained using the highpower free electron laser at the siberian center for photochemical research

    No full text
    The first lasing near the wavelength of 140 µm was achieved in April 2003 using a high-power free electron laser (FEL) constructed at the Siberian Center for Photochemical Research. In this paper we briefly describe the design of the FEL driven by an accelerator–recuperator. Characteristics of the electron beam and terahertz laser radiation, obtained in the first experiments, are also presented in the paper.У Сибірському центрі фотохімічних досліджень навесні 2003 року отримана генерація випромінювання з довжиною хвилі 140 мкм на потужному лазері на вільних електронах (ЛВЕ). У роботі коротко описана конструкція ЛВЕ на базі прискорювача рекуператора і представлені результати вимірювання деяких параметрів електронного пучка і терагерцового випромінювання.В Сибирском центре фотохимических исследований весной 2003 года получена генерация излучения с длиной волны 140 мкм на мощном лазере на свободных электронах (ЛСЭ). В работе кратко описана конструкция ЛСЭ на базе ускорителя рекуператора и представлены результаты измерения некоторых параметров электронного пучка и терагерцового излучения

    Progenitor and Remnant of the Luminous Red Nova V838 Monocerotis

    No full text
    © 2020, Pleiades Publishing, Ltd. Abstract—The article presents the results of multicolor photometry, medium and low resolution spectroscopy of the red nova V838 Mon remnant for 16 years after the 2002 outburst. We also used the archival photometry with the photographic plates of the Sonneberg and Moscow collections from 1928 to 1994. Analysis of these observational data confirmed that the progenitor of the V838 Mon explosion was a wide pair of B3V type stars of reduced luminosity. A brighter component exploded; it was 36 per cent brighter than its companion, and located on the zero-age main sequence of the Spectrum–Luminosity Diagram. Immediately after the outburst, in the fall of 2002, the remnant was a brown L-type supergiant (sgL), but in the fall of 2003 its spectrum changed to M type with a blue radiation excess appeared in the spectral energy distribution, which we interpreted as the reflection effect of the B type companion on the dust formed on the M star. In 2008, the companion was engulfed by the expanding explosion remnant, a type M supergiant (sgM). When the companion was immersing in the expanding M-star, a void was discovered under the M-star upper layer, in which the companion moved for about 200 days. Over the past 10 years, the luminosity of the M star has increased in the V filter by a factor of 10, and the spectral type has changed from M7.5 to M5.5. Based on radial velocities in the BaII 6497 Å and CaI 6572 Å lines, a deceleration of the expanding envelope of the M supergiant was detected, and in 2018, the envelope velocity approached to the heliocentric velocity of the star +71 km s−1. Quasi-periodic changes with a period of 320 days appeared then in the light curves, especially clearly expressed in I filter. We assume that the remnant has an elongated structure, and its rotation period is about 640 days. This is probably a gigantic contact system that will become a detached binary system in future development. The observations do not confirm the assumption that the explosion of one of the V838 Mon components was due to the merger of a compact binary system components located in a hierarchical triple one. Two hypotheses were proposed on the nature of the explosion of one of the V838 Mon components, directly based on the early age of this system: (1) the ignition of thermonuclear burning of hydrogen in the core after the gravitational compression of a protostar; (2) the fragmentation of the core inside a rapidly rotating star in the stage of gravitational compression of a protostar, and later, the subsequent defragmentation (merger of the core components) due to the loss of torque

    Optical Monitoring of Seyfert Galaxies and Quasar Nuclei in 1998. I. Observations

    No full text
    The variations of emission-line profiles of NGC 4151, NGC 5548, 3C 390.3, Arp 102-B and E1821+643 in 1998 are being investigated

    Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIV. Intensive Optical Spectrophotometric Observations of NGC 7469

    Get PDF
    We present results of an intensive 2 month campaign of ground-based spectrophotometric monitoring of the Seyfert 1 galaxy NGC 7469, with a temporal resolution [approximately less than]1 day. The broad Hα and Hβ emission lines respond to ~35% ultraviolet continuum variations with an amplitude of ~10% and time delays of 5.6±1.3 days and 5.4±0.8 days, respectively. We interpret this as evidence of variable Balmer line gas ~5-6 light days from the central source in this object, widely believed to be a supermassive black hole. The virial mass of the central source implied by line widths and time delays is ~106-107 M◉ Concomitantly, we find evidence for wavelength-dependent continuum time delays : optical continuum variations lag those at 1315 Å by 1.0±0.3 days at 4865 Å to 1.5±0.7 days at 6962 Å. . This suggests a stratified continuum reprocessing region extending several light days from the central source, possibly an accretion disk

    Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XI. Intensive Monitoring of the Ultraviolet Spectrum of NGC 7469

    Get PDF
    From 1996 June 10 to July 29, the International Ultraviolet Explorer monitored the Seyfert 1 galaxy NGC 7469 continuously in an attempt to measure time delays between the continuum and emission-line fluxes. From the time delays, one can estimate the size of the region dominating the production of the UV emission lines in this source. We find the strong UV emission lines to respond to continuum variations with time delays of about 2.d3-3.d1 for Lyα, 2.d7 for C IV λ1549, 1.d9-2.d4 for N IV λ 1240, 1.d7-1.d8 for Si IV λ 1400, and 0.d7-1.d0 for He II λ1640. The most remarkable result, however, is the detection of apparent time delays between the different UV continuum bands. With respect to the UV continuum flux at 1315 Å, the flux at 1485 Å, 1740 Å, and 1825 Å lags with time delays of 0.d21, 0.d35, and 0.d28, respectively. Determination of the significance of this detection is somewhat problematic since it depends on accurate estimation of the uncertainties in the lag measurements, which are difficult to assess. We attempt to estimate the uncertainties in the time delays through Monte Carlo simulations, and these yield estimates of ~0.d07 for the 1 σ uncertainties in the interband continuum time delays. Possible explanations for the delays include the existence of a continuum-flux reprocessing region close to the central source and/or a contamination of the continuum flux with a very broad time-delayed emission feature such as the Balmer continuum or merged Fe II multiplets
    corecore