1,767 research outputs found

    Survival of fossils under extreme shocks induced by hypervelocity impacts

    Get PDF
    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34?km?s?1, corresponding to mean peak pressures of 0.2–19?GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon

    Comet 81p/Wild 2: The Updated Stardust Coma Dust Fluence Measurement for Smaller (Sub 10-Micrometre) Particles

    Get PDF
    Micrometre and smaller scale dust within cometary comae can be observed by telescopic remote sensing spectroscopy [1] and the particle size and abundance can be measured by in situ spacecraft impact detectors [2]. Initial interpretation of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft [3] appears to show that very fine dust contributes not only a small fraction of the solid mass, but is also relatively sparse [4], with a low negative power function describing grain size distribution, contrasting with an apparent abundance indicated by the on-board Dust Flux Monitor Instrument (DFMI) [5] operational during the encounter. For particles above 10 m diameter there is good correspondence between results from the DFMI and the particle size inferred from experimental calibration [6] of measured aerogel track and aluminium foil crater dimensions (as seen in Figure 4 of [4]). However, divergence between data-sets becomes apparent at smaller sizes, especially submicrometre, where the returned sample data are based upon location and measurement of tiny craters found by electron microscopy of Al foils. Here effects of detection efficiency tail-off at each search magnification can be seen in the down-scale flattening of each scale component, but are reliably compensated by sensible extrapolation between segments. There is also no evidence of malfunction in the operation of DFMI during passage through the coma (S. Green, personal comm.), so can the two data sets be reconciled

    Icy ocean worlds, plumes, and tasting the water

    Get PDF
    This paper considers how space missions that fly through the plumes known, or suspected, to erupt naturally from some icy ocean worlds (IOW), such as Enceladus, or that aim to intercept icy ejecta from impact cratering processes on such bodies can sample the water and ice within the plumes. The mechanics of how grains (either in the plumes or the ejecta) would interact with a passing spacecraft (i.e., impact speeds, shock pressures, etc.) are introduced. The impact speeds are estimated and vary with both the mass of the IOW and the orbital parameters of a space mission. This can lead to large differences in impact speeds (and hence collection methods) at bodies such as Enceladus and Europa. The implications of these different impact speeds (a few hundred m s−1 to several km s−1, and even greater than 10 km s−1) for the collection of organic materials from the plumes are shown to be significant

    Aluminum Foils of the Stardust Interstellar Collector: The Challenge of Recognizing Micrometer-sized Impact Craters made by Interstellar Grains

    Get PDF
    Preliminary Examination (PE) of the Stardust cometary collector revealed material embedded in aerogel and on aluminium (Al) foil. Large numbers of sub-micrometer impact craters gave size, structural and compositional information. With experience of finding and analyzing the picogram to nanogram mass remains of cometary particles, are we now ready for PE of the Interstellar (IS) collector? Possible interstellar particle (ISP) tracks in the aerogel are being identified by the stardust@home team. We are now assessing challenges facing PE of Al foils from the interstellar collector

    Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts

    Get PDF
    Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity

    Immunisation with ‘naïve' syngeneic dendritic cells protects mice from tumour challenge

    Get PDF
    Dendritic cells (DCs) ‘pulsed' with an appropriate antigen may elicit an antitumour immune response in mouse models. However, while attempting to develop a DC immunotherapy protocol for the treatment of breast cancer based on the tumour-associated MUC1 glycoforms, we found that unpulsed DCs can affect tumour growth. Protection from RMA-MUC1 tumour challenge was achieved in C57Bl/6 MUC1 transgenic mice by immunising with syngeneic DCs pulsed with a MUC1 peptide. However, unpulsed DCs gave a similar level of protection, making it impossible to evaluate the effect of immunisation of mice with DCs pulsed with the specific peptide. Balb/C mice could also be protected from tumour challenge by immunisation with unpulsed DCs prior to challenge with murine mammary tumour cells (410.4) or these cells transfected with MUC1 (E3). Protection was achieved with as few as three injections of 50 000 naïve DCs per mouse per week, was not dependent on injection route, and was not specific to cell lines expressing human MUC1. However, the use of Rag2-knockout mice demonstrated that the adaptive immune response was required for tumour rejection. Injection of unpulsed DCs into mice bearing the E3 tumour slowed tumour growth. In vitro, production of IFN-γ and IL-4 was increased in splenic cells isolated from mice immunised with DCs. Depleting CD4 T cells in vitro partially decreased cytokine production by splenocytes, but CD8 depletion had no effect. This paper shows that naïve syngeneic DCs may induce an antitumour immune response and has implications for DC immunotherapy preclinical and clinical trials

    Online and Face-to-Face Performance on Two Cognitive Tasks in Children With Williams Syndrome

    Get PDF
    There has been an increase in cognitive assessment via the Internet, especially since the coronavirus disease 2019 surged the need for remote psychological assessment. This is the first study to investigate the appropriability of conducting cognitive assessments online with children with a neurodevelopmental condition and intellectual disability, namely, Williams syndrome. This study compared Raven’s Colored Progressive Matrices (RCPM) and British Picture Vocabulary Scale (BPVS) scores from two different groups of children with WS age 10–11 years who were assessed online (n = 14) or face-to-face (RCPM n = 12; BPVS n = 24). Bayesian t-tests showed that children’s RCPM scores were similar across testing conditions, but suggested BPVS scores were higher for participants assessed online. The differences between task protocols are discussed in line with these findings, as well as the implications for neurodevelopmental research
    • …
    corecore